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Series Foreword

Women Philosophers and Scientists

The history of women’s contributions to philosophy and the sciences dates back to
the very beginnings of these disciplines. Theano, Hypatia, Du Chaételet, Agnesi,
Germain, Lovelace, Stebbing, Curie, Stein are only a small selection of prominent
women philosophers and scientists throughout history.

The Springer Series Women Philosophers and Scientists provides a platform for
publishing cutting-edge scholarship on women’s contributions to the sciences, to
philosophy, and to interdisciplinary academic areas. We therefore include in our
scope women’s contributions to biology, physics, chemistry, and related sciences.
The Series also encompasses the entire discipline of the history of philosophy since
antiquity (including metaphysics, aesthetics, philosophy of religion, etc.). We wel-
come also work about women’s contributions to mathematics and to interdisci-
plinary areas such as philosophy of biology, philosophy of medicine, sociology, etc.

The research presented in this series serves to recover women’s contributions
and to revise our knowledge of the development of philosophical and scientific
disciplines, so as to present the full scope of their theoretical and methodological
traditions. Supported by an advisory board of internationally-esteemed scholars, the
volumes offer a comprehensive, up-to-date source of reference for this field of
growing relevance. See the listing of planned volumes.

The Springer Series Women Philosophers and Scientists will publish mono-
graphs, handbooks, collections, anthologies, and dissertations.

Paderborn, Germany Ruth Hagengruber
Cleveland, USA Mary Ellen Waithe
Vercelli, Italy Gianni Paganini

Series editors
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Introduction

Tatiana Afanassjewa (1876-1964) was a Russian-Dutch mathematician and
physicist, who made important contributions to the foundations and philosophy of
physics. She was also a prominent voice in the didactics of mathematics and an
active participant in some of the most influential intellectual debates of the earliest
twentieth century. However, her legacy has received little attention from philoso-
phers and historians of science: all too often she is remembered only as the lesser
known co-author of the publications she wrote together with her husband Paul
Ehrenfest (1880-1933) on statistical physics. While these influential collaborative
works are part of her legacy (and will be discussed in this book), Afanassjewa’s
independent contributions, in particular to the foundations of thermodynamics and
the didactics of mathematics, offer many visionary insights and deserve more
exploration than has so far been accorded to them.

This book aims to provide an in-depth and comprehensive exploration of Tatiana
Afanassjewa’s legacy. We hope that it will (i) highlight Afanassjewa’s independent
work, thereby raising her profile in the philosophy of physics community and
making sure that her achievements are not unjustly overshadowed by those of her
husband, and (ii) analyse selected aspects of her works and demonstrate how they
continue to yield insights into the foundations of physics and mathematics.

The book is an edited volume of original contributions from a diverse set of
authors. A number of the papers collected in this book are based on contributions to
the workshop Tatiana Afanassjewa and her legacy: New perspectives on irre-
versibility, which took place on June 17-18, 2017, at the University of Salzburg.
However, we have also elicited additional contributions on aspects of Tatiana
Afanassjewa’s work and life that were not represented at the workshop.
Furthermore, in order to make her work more accessible to physicists, philosophers
and mathematicians, the volume will contain translations of key passages from
publications that are currently only available in German and Dutch. The authors
contributing to this book are all well-regarded experts in their relevant fields and we
have been fortunate in attracting such a high-calibre field of contributors.

The book is divided into three parts: Part I (Chaps. 1-3) discusses Tatiana
Afanassjewa’s biography and independent works; Part II (Chaps. 4-6) presents

ix



X Introduction

select aspects of her collaborative work with Paul Ehrenfest (in this introduction,
we follow the usual naming convention for the authors of these joint works by
referring to Paul and Tatiana as ‘the Ehrenfests’); Part III (Chap. 7-8) contains
translations of Tatiana Afanassjewa’s work on the foundations of thermodynamics,
which is currently only available in German, and her publications on the didactics
of mathematics, which are currently only available in Dutch. In the following, we
will briefly introduce each chapter.

Part I: Tatiana Afanassjewa’s Life and Forgotten Legacy

In Chap. 1, Margriet van der Heijden provides a biographical sketch of Tatiana
Afanassjewa’s life. Afanassjewa studied mathematics and physics both at the
Bestuzhev courses for women and later at the ‘regular’ university in St Petersburg.
In 1902 she went to Géttingen to study under Felix Klein, where she met Paul
Ehrenfest, who shared her ideals, and who she married in Vienna in 1904. When the
couple moved to St Petersburg, she became a prominent participant in debates on
mathematical education there. Her life changed again when she accompanied
Ehrenfest to Leiden, The Netherlands, in 1912, where he became a full professor
of theoretical physics, as the successor of H. A. Lorentz, while laws and unwritten
rules prevented her from obtaining an academic position. It demonstrates
Afanassjewa’s strength that she soon initiated a fierce debate on mathematical
education—it led to the foundation of the academic journal Euclides for Dutch
mathematics teachers—while also designing a house that would provide a wel-
coming household where Einstein, Bohr and at least a dozen of other Nobel lau-
reates and many more academics and students participated in lively debates.

In Chap. 2, Marianna Antonutti Marfori explores Afanassjewa’s work on the
pedagogy of mathematics, in particular geometry, and discusses Afanassjewa’s
views on the teaching of geometry in the context of the early twentieth century
debate on mathematical education. Afanassjewa holds that the educational value of
geometry lies in its method and its quest for utmost clarity. By learning to process
spatial images in their mind by representing them visually, filling in gaps, and
identifying contradictions, the student can make the method of geometry their own,
and go on to apply it to new problems, both inside and outside geometry. Both
of the dominant approaches at the time, on Afanassjewa’s view, fail to recognize
this essential aspect of geometry. According to the first of these, geometry should
be taught by laying out rigorous, discursive proofs in the style of Euclid. According
to the second, geometry should be taught by developing insights arising from
concrete examples. Since a rigorous, axiomatic presentation of the results of
geometry does not show the thought process that brought it about, the student
cannot understand or appreciate the importance of a logical presentation of
geometry until they have already attained a certain mastery of the subject matter.
On the other hand, the untrained student cannot generally be expected to make the
correct generalizations from concrete examples. Afanassjewa argues that the correct
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approach is to develop the student’s reasoning about spatial relations and their
presentation, thereby also training the student’s ability to reason logically. Once
space has been studied systematically in this way, the student will be able to
recognize the axioms of geometry as evident and appreciate the value of an axio-
matic presentation of the subject. The chapter discusses the points of contact
between Afanassjewa’s views on the roles of logic and intuition in geometry and
those of Poincaré, Klein, and Hilbert.

In Chap. 3, Jos Uffink and Giovanni Valente discuss crucial aspects of
Afanassjewa’s (1925, 1956) original work on the foundations of thermodynamics.
First, they focus on her treatment of reversibility in thermodynamics and her
introduction of ‘quasiprocesses’ in this treatment and show how closely this dis-
cussion relates to some current discussions in philosophy of science and show how
her approach resolves a paradox put forward by Norton (2013, 2016) that allegedly
plagues thermodynamically reversible processes. Another issue raised by
Afanassjewa is whether, owing to the formal analogy between temperature and
pressure as integrating divisors for heat and work, respectively, one could formulate
the Second Law not just in terms of entropy, but also in terms of volume
non-decreasing processes when no work is performed on a system. Yet, she pointed
out that one can construct examples where the analogy breaks down, unless some
extra axiom is added. Finally, Uffink and Valente take up her discussion of the
alleged logical equivalence between Kelvin and Clausius formulations of the
Second Law, which Afanassjewa questioned in light of the possibility of absolute
negative temperature, 30 years before Ramsey (1957) made that possibility more
widely known to the physical community.

Part 11: The Ehrenfests’ Work on the Foundations
of Statistical Mechanics

In Chap. 4, Roman Frigg and Charlotte Werndl analyse the Ehrenfests’ argument
for the conclusion that the phase averages generated by Gibbsian statistical
mechanics and Boltzmannian equilibrium values should coincide. The relation
between the Boltzmannian and Gibbsian formulation of statistical mechanics is still
a major conceptual theme in the foundations of statistical mechanics: therefore, the
argument is still highly relevant today. The chapter fills in some important details
the original argument skipped over and points out that the its scope is limited to
dilute gases. This is not a shortcoming of their argument but an inherent limitation
of the claim: it is not generally the case that Boltzmannian equilibrium values and
Gibbsian phase averages agree. They then discuss the example of the six-vertex
model and show that in that model the two values come apart and go on to offer a
general theorem providing conditions for the equivalence of Boltzmannian equi-
librium values and Gibbsian phase averages.
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In Chap. 5, Patricia Palacios analyses the ‘ergodic hypothesis’ which the
Ehrenfests prominently introduced and highlighted in their celebrated joint
Encyclopedia article of 1911 as a crucial assumption of Boltzmann’s approach to
statistical mechanics. This article has been strongly criticized by historians of sci-
ence as not providing an historically accurate account of Boltzmann’s approach.
However, Palacios also evaluates the role that the ergodic hypothesis of the
Ehrenfests came to play in the subsequent development of ergodic theory in the
course of the twentieth century and argues that the major constructive role of the
Ehrenfest’s discussion of the ergodic hypothesis in these developments stems
precisely from those aspects about their formulation of the hypothesis that histo-
rians have regarded as historically inaccurate.

In Chap. 6, Joshua Lucasz and Lena Zuchowski highlight and discuss the
Ehrenfests’ use of toy models to explore irreversibility in statistical mechanics. In
particular, the chapter explores their urn and P—Q models and emphasizes that while
the former was primarily used to provide a simple counter-example to Zermelo’s
objection to Boltzmann’s statistical mechanical under-pinning of the Second Law of
Thermodynamics, the latter was intended to highlight the role and importance of the
Stosszahlansatz as a cause of the tendency of systems to exhibit entropy increase.
They also explain the sense in which these models are toy models and why agents
can use them, as the Ehrenfests did, to carry out this important conceptual work,
despite the fact that they do not represent any real system.

Part I11: Translations from German and Dutch

Chapter 7 presents the translation by Marina Baldissera Pacchetti of one paper and
four chapters of Tatiana Afanassjewa’s book on the foundations of thermodynam-
ics. The paper, published in 1925 in the journal Zeitschrift fiir Physik, is titled 'On
the Axiomatization of the Second Law of Thermodynamics'. In this paper,
Afanassjewa considers the axiomatic derivation of the Second Law of
Thermodynamics by Carathéodory (1909) and argues that this derivation requires at
least two more logically independent axioms. After 1925, she wrote many more
papers on the foundations of thermodynamics and summarized her views in a book
manuscript in the early 1940s. This book, entitled Die Grundlagen der
Thermodynamik (The Foundations of Thermodynamics) was finally published in
Leiden in 1956. This volume will provide a first translation of selected parts of this
book in English. This translation includes the foreword, in which Afanassjewa
clarifies her approach; the Chap. 1, in which she clarifies her use and understanding
of fundamental terminology; Chap. 6, in which she discusses the distinction
between processes and quasiprocesses and related issues—such as reversibility and
entropy; Chap. 8, on the Clausius-Thomson principle and irreversibility; and,
finally, the third appendix, in which she comments on the Bolzmannian H-theorem.

In Chap. 8, Pauline van Wriest translates Tatiana Afanassjewa’s famous mani-
festo, What can and should geometry education offer a non-mathematician? (1924)
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from Dutch, a manifesto which led to an intense dispute with E. J. Dijksterhuis on
mathematical education which in turn led to the foundation of a new
Dutch-language journal Euclides, devoted to the teaching of mathematics.

Jos Uffink
Giovanni Valente
Charlotte Werndl

Lena Zuchowski
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Tatiana Afanassjewa’s Life and Forgotten
Legacy



Chapter 1 ®)
Tatiana Ehrenfest-Afanassjewa: No oo
Talent for Subservience

Margriet van der Heijden

One tall house stands out at the end of Leiden’s quiet and inconspicuous Witte Rozen-
straat, just outside the city center. Its white-plastered walls, its size, and neoclassical
design contrast with the modest appearances of the neighboring brick houses. A
curious passer-by might notice the two plaques in the almost windowless wall on the
street side. One is dedicated to the Austrian—Dutch physicist Paul Ehrenfest. “Here
lived and worked professor Paul Ehrenfest,” it says, simply. The white stone plaque
was a gift from the Christiaan Huygens Dispuut, the debating society for students in
mathematics and natural sciences in Leiden with a long and impressive history.! A
second, similar plaque commemorates “His wife, Tatiana Afanassjewa who, ahead
of her times, opened up this house for people and ideas.”?

A more inquisitive passer-by will, after some further research, observe two more
things. First, the plaque dedicated to Afanassjewa was placed there several years after
the one for Ehrenfest, as if all other people living in the house, including Afanassjewa,
as well as the house itself, were initially only considered to be part of the backdrop
against which Ehrenfest performed his outstanding work. One could argue that this
is how things are done: we remember and commemorate those who perform, not
those who assist them in their performance. This would be a valid point, were it not
for the fact that Ehrenfest is not remembered primarily for his research achievements
in theoretical physics, though they are important, but rather for the role he played as
a “knowledge broker” and “catalyst” within that field.

I'The Dutch “Dispuut Gezelschap Christiaan Huygens” was established at the end of the nineteenth
century and still exists today.

2Tatiana Afanassjewa herself always used this German transcription of her name when not in Russia,
both privately and when publishing essays and research articles. It will be used in the current article
as well.

M. van der Heijden ()
Amsterdam University College, Amsterdam, Netherlands
e-mail: m.w.vanderheijden @auc.nl; margrietheijden @gmail.com
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Critical, excellent in spotting high-profile and groundbreaking work of colleagues
and, as his brother once wrote, “with a flair for recognizing outstanding personalities
with whom you then quickly get in touch,”® Ehrenfest was for theoretical physics
what a charismatic gallery owner can be for the arts.* Colleagues like Einstein, Bohr,
Sommerfeld, and many others greatly appreciated his ability to evaluate their work,
to recognize its weak and strong points, and to link it to old and new trends in physics
in crystal clear language.’ They valued Ehrenfest’s large network, his helpfulness
in bringing people from different places and backgrounds together, and his absolute
and conscientious dedication to physics. They loved to visit the large house at the
end of Witte Rozenstraat, which served as a meeting place and, in a sense, a gallery
for physics.

What role did Afanassjewa play in all that? A second observation a passer-by
might make is that, before her name is even mentioned, she is defined in relation
to Ehrenfest: she was “his wife.”® Does that imply that her role, in “opening up the
house,” was a traditional one? Was she the professor’s wife who enjoyed being a
hostess for the many—mostly male—scientists that came to the house with a mind
full of ideas and with high hopes of sharing and discussing those ideas with other
visitors? In the context of Dutch society, with its conservative stance on gender
roles, it would be tempting to answer these questions affirmatively, especially since
no further details on Afanassjewa’s background, training, or possible public roles are
given.

Yet, in spite of the good intentions of the Christiaan Huygens Dispuut, such
an interpretation does not do justice to Tatiana Ehrenfest-Afanassjewa, who did
indeed receive plenty of guests in Leiden and elsewhere, but who had no talent for
subservience. Afanassjewa was an independent and successful Russian mathemati-
cian and physicist in her own right, with the extraordinary courage to trace out her
own path under circumstances and in times and places that hardly allowed women to
develop and use their talents. She not only opened up her home to outsiders, as the
plaque commemorates, she herself designed this magnificent house which, to this
day, shows a number of interesting “Russian” details.’

3Hugo Ehrenfest to Paul Ehrenfest, 9 April 1924: Ehrenfest Archive, Museum Boerhaave Leiden
(EA-MBL) 1.1.2.

“Ehrenfest himself inspired this notion, since he once compared Einstein to Holbein and Bohr to
Rembrandt during a conversation with Robert Oppenheimer: Undated note from R. Oppenheimer
to M. J. Klein, EA-MBL 12.1.

SKlein (1970).

6Marriage certificate, 21 December 1904: EA-MBL 2.2.

7Examples are thick walls that keep the house warm in winter and cool in summer; a heating system
with horizontal pipes rather than radiators; double-glazed windows with large spaces between the
inner and outer layers of glass; “lazy” stairs that are more likely to be found in Saint Petersburg
than in Leiden. Sketches and building plans: Ehrenfest Family Archive (EFA).
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1.1 The Alarming Rectilinearity of Her World line

Who was Tatiana Afanassjewa? In a letter to her and Ehrenfest, written shortly after
a stay in Leiden, their friend Albert Einstein wrote jokingly: “T will also join us [in
appreciating Bach] despite the alarming rectilinearity of her intellectual worldline
(an exception to the laws of motion?).”® Einstein is referring here to Afanassjewa’s
lack of willingness, at least until then, to attach a higher value to Bach’s chorales
than to those by Russian composers. In the same stroke, he also characterizes her
entire intellectual development as rectilinear.

Grudging admiration seems to resound in the little joke. Afanassjewa was totally
different from the women that surrounded Einstein at the time. Einstein had just spent
years finishing the covariant equations of relativity, after years of work,” and was
in the midst of formalizing his divorce from Mileva Mari¢. In addition, his future
family-in-law was putting pressure on him to marry Elsa Einstein, who had been
taking care of him and had already been waiting for him for quite some years.'?
They unnerved him, “these women” who “always wait for someone to come along
who will use them as he sees fit,”'! as he once wrote in these gloomy months.
Afanassjewa offered a striking contrast: she had an independent streak, an analytical
mind, she strongly expressed her ideas about education, and she freely participated
in the many discussions about physics that took place in the large study at Witte
Rozenstraat. Partly inspired by Leo Tolstoy whose portrait had a prominent place in
the study,'? she was also a vegetarian and abstained from alcohol and smoking, just
like her husband.

Tolstoy’s books and ideas had been part of her upbringing. Afanassjewa was raised
by her aunt and uncle: the respectable and childless Sonya Maslova and her husband
Pyotr Afanassjew, who worked as a chief engineer for the tsar’s railways. Her mother,
Yekaterina Ivanova, had taken little Tatiana from Kiev to Petersburg when she was
only two years old, after her husband, the engineer Alexey Afanassjew, had suffered
a major mental breakdown and had been committed to a mental asylum. In this city
of tsars, ice, and white nights, a city oriented toward the Western world, her aunt and
uncle had treated Afanassjewa as their own daughter and had given her an excellent
education.'

A good education was one of the things Afanassjewa shared with Einstein’s soon
to be ex-wife wife Marig, just as Ehrenfest shared quite a few traits with Einstein
himself. Ehrenfest and Einstein were almost the same age, had both been raised in
a secular, Jewish, middle-class family, both loved to play music, and both strongly

8Einstein to Ehrenfest, 18 October 1916: The Collected Papers of Albert Einstein (CPAE) 8a, Doc.
268; Also cited in Klein (n.5) 304.

9The first detailed discussions of this work can be found in letters to Ehrenfest: CPAE 8a, Docs.
182, 185.

10gee, e.g., CPAE 8a, Introduction.

1 Einstein to Besso, 21 July 1916: CPEA 8a, Doc. 238.

12Senger and Ooms (2007).

13Biographical notes by son-in-law Henk van Bommel, undated: EFA.
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disliked the German educational system. Afanassjewa and Mari¢ were raised in
families that adhered to the Orthodox Church—in Russia and Serbia, respectively—
—both were a couple of years older than their husbands, they had completed the
gymnasium (a kind of grammar school) before studying physics and math, and both
went abroad to study at university.'*

Yet, there was a crucial dissimilarity between the two women as well. The rebel-
lious and fierce Mari¢ had been crushed by the immense talents and ambitions of her
Albert. In their household with two small sons, amidst the laundry and the cooking,
Mari¢ had become a somber shadow of her former self.!> By contrast, Afanass-
jewa and her charismatic, insecure, and restless Paul had managed to organize their
household, eventually including four children, in such a way that Afanassjewa could
continue to study and work—though perhaps not as much and as freely as she would
have liked. It made an impression on Einstein, as he wrote after another stay in
Leiden, three years later, in 1919: “Not in any other house did I experience such a
joyful family life; it stems from two independent people who are not bound together
by compromises!”!¢

Einstein had been equally observant when he had used the epithet “rectilinear”
to characterize Afanassjewa’s “intellectual worldline,” as some persistent trends can
be observed in her intellectual world. Guiding lines in her life were her rock-solid
passion for mathematics and physics, particularly thermodynamics, the value she
attached to independent, logical, and critical thinking, as well as her clear and strongly
voiced ideas about education, especially about teaching geometry.'” Another constant
throughout her life was her attachment to things Russian: its hills and forests,!® its
music, language, and literature, as well as some of its traditions and many of its
scientists.

1.2 Higher Women Courses for the Weaker Sex

What was Russia like while Afanassjewa grew up there? How did she end up
in Leiden? Her link to this modest Dutch town was Ehrenfest, whom she met in
Géttingen in 1902, ten years before he became successor to Hendrik Lorentz!? at the
University of Leiden. After finishing her studies in Russia, Afanassjewa had traveled
to Gottingen, the German “Mecca of mathematics,” with her aunt Sonya, hoping to
deepen her knowledge of physics and mathematics. She was not the first Russian
woman to do so. The two most important mathematicians in town, Felix Klein and

14Mari¢ went to Ziirich immediately after high school. See, e.g., Popovié¢ (2003).
158ee, e.g., CPAE 9, Introduction.
16Einstein to Ehrenfest, 9 November 1919: CPAE 9, Doc. 155.

17Ehrenfest-Afanassjewa (1960). Personal details: from the preface to this collection of essays by
Dutch mathematician Bruno Ernst [pseudonym of J.A.F. [Hans] de Rijk].

18personal communication T. van Bommel.
19Hendrik Antoon Lorentz (1853-1928). For a concise biography, see Kox (2018).
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David Hilbert, had no objection to women in their field and in the years before
Afanassjewa’s arrival two Russian women, Lyubov Zapolskaya®® and Nadezhda
Gernet,2! had finished their doctorates with Hilbert.?

Yet, Afanassjewa hardly received a warm welcome. German students in several
cities had raised objections against the number of foreign students, and especially
against female foreign students, for the most part Russian, who were taking up space
and time in the already overcrowded lecture rooms. In response, the University
of Leipzig and the medical faculty in Gottingen had decided not to admit women
any longer and, although Hilbert and Klein did not follow this example, it is not
surprising that the mathematics and physics students strictly adhered to the old
policy of excluding women from their weekly colloquia.?® “Women are invited during
festivities only,” was the reply Ehrenfest supposedly received, when he inquired why
the new Russian student—Afanassjewa—had not been invited. Eventually, it was
Ehrenfest who successfully challenged the unwritten rules. It marked the start of a
long-term relationship between him and Afanassjewa.>*

Afanassjewa was happy to participate, discuss, and learn, but: “There was a large
difference between what the professors in Petersburg had taught us, and what was
discussed in Gottingen (Klein, Hilbert, Minkowski),” she said, much later in life.?
For women, nothing in the educational system was to be taken for granted and this was
true as well for Afanassjewa, even though she had grown up in St Petersburg, where
a feminist elite had advocated for higher education for women well before women
in most European countries began to do s0.2° In St Petersburg, the first gymnasia for
girls opened as early as the middle of the nineteenth century, and around 1860, many
well-to-do citizens opened up their salons to women for free lectures on Sundays,
while women also began to attend lectures at the university. After Tsar Alexander 11
had prohibited all these activities in 1862, an impressive number of Russian women
went abroad to attend the universities of Ziirich and Paris, which had just opened

20Lyubov Zapolskaya (1871-1943). Like Afanassjewa, she studied at the Pedagogical Institute, the
Bestuzhev Institute, and then obtained her Ph.D. in Géttingen, with Hilbert (1901). In Russia, in
Saratov, she then taught mathematics, among other subjects, and headed the department of Higher
Mathematics and Mechanics at the Pedagogical Institute of Yaroslav. she-win.ru/nauka/588-lubov-
zapolskaya.

2INadezhda Gernet (1877-1943) first studied at the Bestuzhev Institute, and then obtained a Ph.D.
with Hilbert in Géttingen (1902). She became a teacher at Bestuzhev, and went on to teach at the
university, once its courses had merged with those at the Bestuzhev Institute. In 1930, she became a
professor at the Polytechnic Institute in Petersburg: Editors A.N. Kolmogorov and A.P. Yushkevich,
Mathematics of the 19th century (Basel 1998).

22K lein received support for his policy from the Prussian minister for education. E.g., Thiele (2011).
23Bonner (1995).

24Afanassjewa to M. J. Klein, undated: EA-MBL 12.1.

25Ehrenfest-Afanassjewa (n.17). Strikes and unrest in 1899 may have had a negative effect on the
courses.

20The cities were different from the rural areas in Russia, where the majority of the population was
illiterate.
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their doors to women students. In fact, of the 203 women who studied in Ziirich
between 1864 and 1872, 148 came from Russia.?’

Afanassjewa’s generation was the first one to profit from their efforts. Fearing
that, after their return from abroad, women scientists and lawyers would oppose his
policies and undermine his authority even more, Alexander II and his government
relented and allowed for the establishment of Higher Women Courses, in other words,
higher education for women. The Higher Women Courses in St Petersburg opened
their doors in 1878, just before Afanassjewa first arrived in the city. They were
soon referred to as the Bestuzhev courses, after their first dean, the historian K. N.
Bestuzhev-Ryumin.?® A private organization took care of funding for the institute,
raising money through book sales, concerts, and by collecting gifts,” and not long
afterward a large new building appeared on the Vasilyevsky Island, not far from the
university.3°

Large efforts were made to guarantee high-level lectures. Professors like Dmitri
Mendeleyev and Alexander Borodin taught courses at the Bestuzhev for a small fee.
Other scientists offered moral support: “If a woman receives an adequate education
and training she can pursue culture in science, art and public life just as well as aman,”,
the brilliant professor and surgeon Nikolay Pirogov wrote to a baroness friend of his,
in the year when Afanassjewa was born.?! This intellectual climate, as well as having
been raised in an academic environment (her uncle would soon become a professor
of mathematics at the Polytechnic Institute in Petersburg,32 while her aunt was in
favor of modern education®®) seemed to almost predestine Afanassjewa to attend
the Bestuzhev courses. Yet, her uncle sent her instead to a pedagogical institute that
trained teachers up to the lower levels of the gymnasium.** Was he afraid perhaps—
—with his brother in mind—that Afanassjewa’s nerves would suffer from intensive
studying? Or was he deterred by the reputation of the Bestuzhev Institute, which was

2TKoblitz (2013).

28www.prlib.ru/en/history/619592. Women could study History and Philology or Physics and

Mathematics. After 1906, a third possibility was Law.

2Stites (1978).

30Currently the faculty of Earth Sciences of the University in Petersburg.

3'Hans (1963). These words were not empty: As early as 1864 9,000 girls were enrolled in 29
girls” schools of the first order (later called gymnasium) and 91 of the second order (later called
progymnasium) and in 1869 another 32 girls’ schools had been established.

32van Bommel (n.13).

33Sonya had sent Afanassjewa to a new private gymnasium, in a large building at the Ulitsa Kabi-
netskaya, slightly south of the Fontanka. The director, Maria Nikolyevna Stoyunina, applied the
innovative pedagogical principles her husband, Vladimir Stoyunin, had described in lectures and
books: teachers tried to foster individual talents, pupils were allowed to jump, run, and talk for
15 min between classes to refresh their minds, and they had gymnastics classes every day. Latin
and Greek were not taught; the curriculum was a watered-down version of what boys were taught,
according to what Afanassjewa said later [n. 17], “but the pedagogical methods were such as I
would like to see them everywhere.”

34Called Pedagogical Courses of the Girls’ Gymnasium and, from 1903 on, Women’s Pedagogical
Institute.
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increasingly seen as rebellious, and even as a “hotbed of anarchism,” according to
the Okhrana, the tsar’s secret service??’

Afanassjewa dutifully, but regretfully, finished her studies at the pedagogical
institute in 1897 and then accompanied her aunt on a trip that finished in Vienna
at Christmas. Little did they know that Afanassjewa’s future husband—a somber
adolescent who had recently lost both his parents—was a student at the Kaiser Franz
Joseph Gymnasium there.*® Their stay in the city was marred by the message they
received that Afanassjewa’s uncle Pyotr was seriously ill. He died soon afterward
and a few weeks later, Afanassjewa enrolled in the Bestuzhev, halfway through the
first year, with financial support from her aunt.?’

The next three years she spent enjoying the lectures and working hard.>® The lack
of enthusiasm of her physics teacher, Orest Khvolson, for her work in her favorite
field disappointed her.** On the other hand, she was encouraged by her favorite math
teacher, Vera Iosifovna Shiff.*? “I was very pleased to read in the newspaper that the
Tsar has decreed that the university of Helsingfors [Helsinki] has to admit women on
the same conditions as men,” Shiff wrote to Afanassjewa in the summer of 1902. “Let
us see whether women will be admitted to Russian universities as well. I cannot think
of any logical reason why women and men would not attend university together.”

“Here in Germany for example [Shiff spent her vacations in Germany] where
society, and students especially, are not in the least sympathetic to the idea of
higher education for women, women are nevertheless admitted to universities without
causing any problems,” she added, and her following remark may have bolstered
Afanassjewa’s self-confidence. “Yet people say that our girls’ gymnasia do not meet
the requirements of the university, while Germany only has two girls’ gymnasia,
one in Karlsruhe and one in Stuttgart, and German girls usually visit the Hohere
Midchenschule, which has a level way below that of our Mariinskiye gymnasia.”*!

3Richard Stites (n.30); Morrissey (1998).
36Johanna Ehrenfest-Jellinek died 3 May 1892; Sigmund Ehrenfest died 10 November 1896.
37Van Bommel (n.13).

381n 1899, large-scale strikes and student protests took place, and they can be viewed as a prelude
to the revolution of 1905, although in 1899 the students were still more preoccupied with academia
and their own position than with society at large. Afanassjewa did not participate in these protests:
she was among the women who believed in more gradual change and who were afraid that the
Women’s courses would be closed in retaliation to protests. See Morrisey (n.34).

390rest Chvolson (1852-1934) was a physics professor in Petersburg and was well known for his
textbooks, which were translated into many languages.

40Shiff herself had completed her studies at the Women’s Courses in 1882. She had later obtained
a Ph.D. in Géttingen and had become a teacher at the Women’s courses. She taught geometry and
calculus, amongst other subjects, and published academic books and articles in Russian academic
journals; she was one of the first Russian women who dedicated her life to mathematics: Mary
(2015).

“1Vera Shiff to Afanassjewa, 26 June/9 July 1901, EFA [translated from Russian to Dutch by Hans
Driessen].
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1.3 Afanassjewa’s Analytical Mind and Ehrenfest’s Physics
Intuition

Did Afanassjewa’s talents and training match her ambitions, as she went from Peters-
burg to Gottingen, from Gottingen to Vienna, and from Vienna back to Russia?
In Gottingen, she felt intimidated, as she later confessed: “The people there had
completed their formal studies at other places in the world. Most of them were
younger than I was and knew more.”*? In Vienna, where she married Ehrenfest in
December 1904, and where she attended Boltzmann’s lectures as an auditor, she
felt completely out of place.*> And when she and Ehrenfest returned to Gottingen,
in 1906, living on their inheritances, Afanassjewa had little hope of starting on an
academic career. By then she was almost 30 years old, her diploma from the Women’s
Courses was looked down upon by many academics, and—in contrast to Gernet,
Zapolskaya, and Shiff—she had not managed to obtain a doctorate in Germany. To
complicate matters, she had a daughter, Tanichka, who was born in Vienna at the end
of 1905.

Still, perhaps indirectly, she must have made an impression on Klein. The digni-
fied Prussian mathematician had, among many other things, set himself the task of
compiling all recent insights from the field of mathematics and physics in an Encyk-
lopddie der mathematischen Wissenschaften. Statistical mechanics, based on the
monumental work of the famous Boltzmann, was one of the fields to be included,
and Klein asked Ehrenfest, a former student of the recently deceased Boltzmann,*
whether he would be willing to write this particular contribution to his encyclo-
pedia—"‘possibly with your wife.” [...] “In any case I would like to ask you and your
wife to visit me at home, perhaps tomorrow (Sunday night) at 6 o’clock, to discuss
matters.”®

Klein’s request did not come out of the blue. Just days earlier, at the weekly
meeting of the Mathematische Gesellschaft, Ehrenfest had presented the urn model*®
that he and Afanassjewa had developed to illustrate and discuss two major objec-
tions against Boltzmann’s famous H-theorem.*’ During her life Afanassjewa would
often be ahead of her time—with her novel ideas on didactics, for example—or lag
behind, like when she arrived in Gottingen just after Gernet. Yet, the timing of this
presentation was perfect. It confirmed Klein’s impression that Ehrenfest had a sound
physics intuition and Afanassjewa a sharp analytical mind, and it convinced Klein
that they were both well acquainted with Boltzmann’s work. By assigning them this

“2Ehrenfest-Afanassjewa (n.17).

#3Klein (n.5); Auditor-papers university Vienna: EA-MBL 2.4.

#Ludwig Boltzmann (1844-1906), who had been suffering from depression for many years,
committed suicide during a vacation in Duino, Italy, in September 1906.

45Klein to Ehrenfest, 16 November 1906: EA-MBL 1.2.2.

46Later also referred to as the “flea model.”

4TPaul had presented their “Urnmodel” at the Mathematische Gesellschaft at the beginning of

November 1906. It later appeared as P. and T. Ehrenfest, “Uber zwei bekannte Einwande gegen das
Boltzmannsche H-Theorem,” Physikalische Zeitschrift 8 (1907) p. 311.
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task, Klein thus gave two unemployed physicists—one a doctor of science, the other
with a somewhat mysterious status—the chance to participate in a prestigious project
and have their work published side by side with the writings of famous scientists like
Arnold Sommerfeld, David Hilbert, and Carl Runge.*®

1.4 Undervalued: Kruzhoks and Odd Jobs

In the following years, similar small tokens of support at crucial moments helped
Afanassjewa advance in mathematics and physics in St. Petersburg, where they had
moved to in 1907, after failing to secure a position in Gottingen. Much has already
been written about Ehrenfest, who befriended Abram Ioffe*” and—at the instigation
of Afanassjewa’s aunt—began to organize biweekly kruzhoks>® where recent papers
in the field of physics were discussed. He quickly became one of the editors of
the Journal of the Russian Physicochemical Society,’' and, with his solid training in
Vienna, Gottingen and, for a brief three months, in Leiden,’? he was soon viewed as an
authority and a superb guide in the novel field of theoretical physics in Petersburg.>

Less is known about how Afanassjewa held down a variety of odd jobs to make
ends meet while organizing her own kruzhok on probability theory and comple-
menting her earlier studies with a degree in physics and mathematics from the
University, which had just opened its doors to women. Actually, just a couple of years
later, the diplomas from the women courses and universities would be considered
equivalent and the two institutions would merge, so her timing was—once again—
—far from fortunate.>* In the first year, after their arrival in Petersburg, she worked
as a mathematics teacher at a private gymnasium [grammar school] and—for a few
hours each week—as an assistant teacher at the Bestuzhev Courses. In the fall of
1908, after moving to Apothecary Island, a bit further away from the center, she
secured for herself a small job at the Pedagogical Museum of the Military Academy.
This institution offered lectures to recruits, and to others who were interested, on a
variety of topics and a lecture that Afanassjewa herself had proposed—on Hilbert
and the foundations of geometry—was well received. The director of the Museum,

48p. and T. Ehrenfest, “Begriffliche Grundlagen der statistischen Auffassung in der Mechanik,”
Encyklopddie der mathematischen Wissenschaften IV (Leipzig 1911). In English: The conceptual
foundations of the statistical approach in mechanics (Ithaca 1959).

49 Abram Toffe (1880-1960) obtained his Ph.D. with Wilhelm Réntgen in Germany and then moved
back to Petersburg where he would later, in Soviet times, become the director of the Leningrad
Physico-Technical Institute (LPTI).

50Djiary and notebooks: EA-MBL 1.2.6; Klein (n.5). Kruzhok means “small circle”: the papers were
discussed within a small circle of physicists and mathematicians.

SErenkel (1977) Chapter 3; Tsipenyuk (1973).

>2Ehrenfest spent some time in Leiden in the spring of 1903: notebooks 1903: EA-MBL 1.2.6;
Klein, Ehrenfest (n.5).

S3Frenkel (n.51).

54Koblitz (n.27).
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General and mathematician Zakhar Maksheyev, who had “accepted her offer to give
a lecture with gratitude,” was so impressed that he asked Afanassjewa to become a
member of his working group to discuss, among other things, reforms in mathematics
education.”®

Such reforms were a hot topic in those years, both in Russia and abroad.’” There
were two opposing camps, as Afanassjewa later wrote in an essay about the didac-
tics of geometry.”® The “logicians,” on the one hand, were in favor of teaching
rigorous proofs: students should learn to derive all theorems from a set of axioms,
just like Euclid himself. The “pragmatists,” on the other hand, preferred to illus-
trate the validity and relevance of the various theorems by using concrete examples,
preferably from everyday life. Since each camp claimed that its own method was the
most successful one, using examples from its own classrooms only, Afanassjewa in
1909 proposed to directly ask first-year students how they looked back on their own
mathematics education in high school. She emphasized that students in all types of
higher education should participate: those at the conservatory, the academy of arts,
as well as the university. In the summer of 1910, at the request of Maksheyev, she
drew up a questionnaire with 54 questions about mathematics in general, algebra,
geometry, and trigonometry, which was to be sent to 10,000 students.’® She was even
working on it in a dacha in Kanuka, only a few days after having given birth to her
second daughter, Galinka, and while Ehrenfest was away, discussing his future with
his friend Herglotz® in Villa Hedonia, a spa in Bad Kissingen.®!

In the following year Afanassjewa also plunged deeper into physics. The proceed-
ings of the First All-Russian Congress for Mathematics Teachers at the end of 1911 in
Petersburg, where she lectured on irrational numbers and participated in the discus-
sions as well as in the publications in the Journal of the Russian Physicochemical
Society/JETP, show that her voice began to be heard.®? At the same time, Ehrenfest
became more and more unhappy in Russia. Since mixed marriages were not allowed
in Austria, he and Afanassjewa had given up their religious affiliations in 1904, and
being a “non-religious man” made it almost impossible for him to obtain an academic
position. That he was of Jewish origin did not help, neither did his critical attitude

5SMaksheyev to Afanassjewa, 1 April 1908: EFA [translated from Russian to Dutch by Hans
Driessen].

56Ehrenfest—Afanassjewa (n.17).

STWeigand et al. (2017).

58Ehrenfest-Afanassjewa (n.17) Chapter II1.

3Undated handwritten manuscript of the questionnaire: EFA [translated from Russian to Dutch by
Hans Driessen].

%0Gustav Herglotz (1881-1953).

61Correspondence Ehrenfest and Afanassjewa, July and August 1910, EA-MBL 1.1.2; Diary, 23
July 1910 [translated from Russian to Dutch by Hans Driessen]; Pim Huijnen, Die Grenze des
Pathologischen, het leven van fysicus Paul Ehrenfest, 1904—1912 (Master’s Thesis University of
Groningen, 2003).

62Proceedings of the First All-Russian Congress for Mathematics Teachers, 27 December 1911—

3 January 1912 [relevant parts translated from Russian to Dutch by Hans Driessen]; Ehrenfest-
Afanassjewa (1911a, 1911b, 1912) [translation ibidem.].
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toward authorities in academia, even though he had established himself informally
as a key player in the field of theoretical physics in Petersburg. “He is the man of the
hour,” Ioffe wrote to his wife after Ehrenfest’s contribution to the Twelfth All-Russian
Congress of Natural Scientists and Medical Doctors in Moscow between Christmas
and New Year 1911/1912.%3

1.5 A Vibrant Household in Traditional Leiden

Nine months later, Afanassjewa took her interest in thermodynamics, statistical
mechanics, probability theory, and mathematics education with her to The Nether-
lands, where Ehrenfest, to the surprise of many, none the least himself, had been
appointed as Lorentz’s successor.** Little is known about the reasons why Lorentz,
who had initially hoped to appoint Einstein to Leiden, asked Ehrenfest, but it is
clear that he had been quite impressed by Ehrenfest’s and Afanassjewa’s long paper
on statistical mechanics in the Encyklopidie.® It is also clear that Ehrenfest was
overjoyed: his lack of prospects in Russia, as well as the grim future he foresaw for
Russia itself, had increasingly been depressing him.

In contrast, for Afanassjewa, it was a painful farewell to the city she loved, where
she had built herself a life with friends and kruzhoks and where her daughters were
surrounded by relatives and where she had hoped, for example, to finalize the results
from the questionnaire survey in which she was so invested.®® In the first days of
1914, she already traveled back to Moscow to participate in the second All-Russian
Congress for Mathematics Teachers, much to the chagrin of her husband. “Try not
to see your exile to Western-Europe in a dark light,” he wrote to her. “Think about
these three things: (1) that an infinite amount of urgent work needs to be done in
Russia, but why? Because no one lets anyone do this work (2) You, and especially
you, are not able to solve this problem (3) If only, if only you would be willing to
proceed from the right angle, you could do many good things here [in Leiden] and in
doing so develop yourself and exert lasting influence—not in the least by educating
your children and through reading and writing.”®®

His concern was unnecessary: Afanassjewa returned and soon afterward the First
World War, and later the revolution in Russia, would prevent her from visiting her
home country for almost a decade. She was safe in an unfamiliar, flat country that

63Frenkel (n.49).

% Ehrenfest had visited Leiden in 1903 (n.53) but the two men had not met each other since, and
Lorentz was under the impression that Ehrenfest was a professor in St. Petersburg now (Klein, n.5).
65Ehrenfest & Ehrenfest (n. 48).

66 Afanassjewa discussed a.0. a very preliminary report about the survey during the second All-
Russian Congress for Mathematics Teachers in Moscow, early in 1914, but the project stagnated
during the turmoil of the First World War, as she herself stated Ehrenfest-Afanassjewa (n.17).
71n Russia it was still December 1913.

%8Ehrenfest to Afanassjewa, 9 January 1914, 11 pm: EA-MBL 1.1.1.
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was democratic and peaceful. From a different perspective, she was also trapped
in this flat country, where women disappeared into the kitchen or the living room
and, in any case, behind the front door, as soon as they were married. Most Dutch
looked down upon women with paid jobs, pitying them for having been unable to
find a supporting husband. The rather patronizing activities of the feminist elite in
Leiden reflected this attitude: one of these activities was to provide needy women
with an extra income by allowing them to do paid needlework—at home, unseen and
anonymous.®” That women obtained the right to vote, in 1919, did little to change
this oppressive atmosphere. In 1924, a new law was even passed to formally exclude
married women from civil service jobs and from teaching positions.”®

Unsurprisingly, Dutch universities were predominantly male, though some female
students had been admitted to the physics department in Leiden. Just before Afanass-
jewa and Ehrenfest arrived in this rather provincial town, one of them even defended
her doctoral dissertation: Berta De Haas-Lorentz.”' She was the eldest daughter of the
eminent Lorentz, who in later years would become Afanassjewa’s sparring partner
in discussions about thermodynamics.’”? Between 1910 and 1920 Lorentz supervised
three more women: Johanna Reudler, who obtained her degree in 1912, Eva Dina
Bruins, who did so in 1918, and Hendrika van Leeuwen, who followed in 1919.
However, only the latter would remain unmarried and would go on to pursue a career
in academia.”® That Lorentz accompanied his wife, Aletta Lorentz-Kaiser, to meet-
ings about women’s rights, also illustrates that he was unusual and more modern than
many of his Dutch contemporaries.” It explains why he took an interest—though a
modest one!—in Afanassjewa’s capabilities.

A few days after their arrival in Leiden, Lorentz sent Ehrenfest a postcard: “I forgot
to ask you yesterday whether Mrs. Ehrenfest, if she is not too busy with furnishing the
house, would like to visit the colloquium tomorrow night. It would be a great pleasure
to me if she would accept this invitation.”” Soon afterward, he introduced Afanass-
jewa to Rommert Casimir, founder and director of the Nederlandsch Lyceum76 in
The Hague, who was strongly in favor of innovative pedagogical methods. Through

69Steen (2011).

7ODe Haan (1998).

"IDe Haas-Lorentz (1913); Original: Over de theorie van de Brown’schen beweging en daarmede
verwante verschijnselen (Ph.D. Dissertation, University of Leiden 1912).

72 A postcard from De Haas-Lorentz to Afanassjewa, 2 May 1956, also refers to “the many hours
in which we discussed thermodynamics together and during which I learned so much from you™:
EA-MBL 2.2.9:482.

73Hendrika van Leeuwen (1887-1974) coordinated the physics lab for students at the Technical
University in Delft, carried out research into magnetism, and became the first female “lector” at
this Technical University in 1947. See, e.g., Blaauboer et al. (2015).

74Personal communication A.J. Kox.

75Lorentz to Ehrenfest, 12 November 1912: EA-MBL: 1.2.2.

76Rommert Casimir (1877-1957) was also extraordinary professor of pedagogy at Leiden University
between 1918 and 1947. At the Nederlandsch Lyceum, the first school of its kind, where, after two
preparatory years, students could choose to focus on science (HBS) or opt for the curriculum of a
traditional gymnasium.
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him, Afanassjewa established a small network of mathematics teachers that began to
meet monthly at Witte Rozenstraat to discuss reforms in mathematics education.”’
At the suggestion of Casimir, she also adapted and translated from Russian to Dutch
some of her essays on this topic.”®

Through reading and writing and by attending the Wednesday evening collo-
quia, organized by her charismatic husband, as well as by participating in the many
discussions with guests, Afanassjewa did indeed develop her intellectual interests
further.”” While the war raged through Europe and while Russia suffered in the years
after the revolution, she also gave birth to two sons—Pawlik (1915) and Vassily
(1918)—and played a crucial role in creating a home that was open to people and
ideas. Following Einstein, who had befriended Ehrenfest in 1912, a growing number
of other luminaries—Niels Bohr, Paul Dirac, Wolfgang Pauli, Werner Heisenberg,
Erwin Schrodinger, Lise Meitner, Robert Oppenheimer, and many more—found
their way to the vibrant household. Their presence created a stimulating atmosphere
and enlivened the small and rather reserved academic community in Leiden, which
was home to Nobel laureates Kamerlingh Onnes and Lorentz, to the well-respected
physicists De Haas and Kuenen, to the renowned astronomer de Sitter, and to bright
students like Burgers, Struik, Coster, Kramers, Uhlenbeck,, Goudsmit, Tinbergen,
and Casimir.%° Visitors and students flocked to the large study at Witte Rozenstraat
and the signatures on the wall in the attic where guests used to sleep still bear witness
to those joyous and stimulating years.?!

1.6 The First Cracks in the Relationship

Happiness hardly ever lasts long, and in the 1920s, the first cracks appeared in
Ehrenfest’s and Afanassjewa’s happy alliance. After the Russian Revolution of 1917,
Afanassjewa’s shares in the Russian Railways were no longer of any value and could
no longer serve as collateral for the huge mortgage on the large house. Moreover,

7TEhrenfest-Afanassjewa (n.17).

78The first translated essay was “Over de rol der axioma’s en bewijzen in de meetkunde” in 1915:
Ehrenfest-Afanassjewa (n.17).

79She published one more article in Russia in those years: Ehrenfest-Afanassjewa (1914).
80Theoretical physicist Hendrik Kramers (1894-952) worked with Bohr and later became professor
in Utrecht, Leiden, and Delft; Physicist Jan Burgers (1895-1981) became professor in Delft and
Maryland; Mathematician Dirk Struik (1894-2000) became professor at MIT; Physicist and mete-
orologist Dirk Coster (1889-1950) became professor in Groningen (he helped Lise Meitner escape
from Nazi Germany); Samuel Goudsmit (1902-1987) was, among other things, head of the ALSOS
mission of the Manhattan Project and worked in Brookhaven National Laboratory. Earlier, in
Leiden, he had discovered electron spin together with George Uhlenbeck (1900-1988), who became
professor in Ann Arbor and at the Rockefeller University in New York; Physicist and economist Jan
Tinbergen (1903-994), who turned to economics at Ehrenfest’s instigation, was awarded a Nobel
prize (1969); Theoretical physicist Hendrik Casimir (1909-2000) became director of the Philips
Physics Laboratory (Natlab).

81Hollestelle (2011); Van der Heijden (2015).



16 M. van der Heijden

the care for their youngest son Vassily, a little boy with Down syndrome who had
been placed in a “modern” institution in Jena, Germany, was expensive.*> More and
more frequently, Ehrenfest complained that the financial burden forced him to take
on extra work—Ilike giving lectures and serving as an examiner elsewhere—which
kept him from being creative. Increasingly, Ehrenfest also emphasized that he felt
unworthy of occupying Lorentz’s former chair, especially when young “Knaben”
like Heisenberg and Dirac began to revolutionize quantum physics. In a long letter
that he intended to read aloud to Afanassjewa, he vented his frustration by blaming
her strong ties to former Russian colleagues and friends for his situation. He began
calmly, by stating that it was “very understandable,” that a big bunch of Russians,
including “some asthmatic Russian professor” [...] “turn to us.” He drew up a list
ranging from her aunt to Friedmann®? and then went on to complain: “what a terrible
pressure it puts on me, someone incapable of handling all these things,” questioning
his need to “sacrifice [his] own development.”84

Afanassjewa was not the type of person to reciprocate and vent her own frustration
in long letters or emotional outbursts. Yet, the years after 1917 had not always been
easy for her either. She had been deeply worried about Vassily (Vassik), her youngest,
and she had been agonizing over the fate of her mother and friends in the young
and isolated Soviet Union. Like Ehrenfest, she had fretted over their expenses, in
particular during and directly after the war when food was still scarce and rationed.
Under these circumstances, finding time for studying and writing had been difficult.
The situation changed after Afanassjewa had taken Vassik to the institution in Jena, in
the spring of 1922. Four months later, to her great relief, her mother finally managed
to travel to the Netherlands.®> “Baba Katya,” as she was called in Leiden, soon began
to take care of the other three children. It marked the beginning of a period during
which Afanassjewa was finally able to study, write, and think again.

1.7 Novel Ideas, not Always Appreciated

Two years later, in 1924, Afanassjewa caused a stir with her essay What can and
should geometry teaching offer a non-mathematician?%® Neither siding with the
“logicians,” nor with the “pragmatists,” she proposed a third way of teaching mathe-
matics which, in the case of geometry, begins with an “intuitive” phase during which
students work through practical exercises to increase their spatial awareness and to
prepare them for the subsequent phases of analytical and, eventually, strictly logical
reasoning. Her brochure led to a sharp, eloquent, and at times rather derogatory,

82Family correspondence spring and summer 1922: EA-MBL 1.1.2.

83 Alexander Friedmann (1888-1925) Russian mathematician and physicist.
84Ehrenfest to Afanassjewa, 1922: EA-MBL 1.1.2.

85Travel documents and correspondence, 1922: EA-MBL 2.2.9 and 2.2.2:435.

86T, Ehrenfest-Afanassjewa, http://www.math.ru.nl/werkgroepen/gmfw/bronnen/ehrenfest2.html
(Den Haag 1924).
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attack by the mathematics teacher and author E. J. Dijksterhuis,” who furiously
defended the traditional teaching methods.?:8%-% Their fierce debate left its traces:
it resulted in the establishment of a journal on the didactics of mathematics, Euclides,
that exists until this day.”! Also, a committee was instituted to redesign mathematics
education at the HBS [Hogere Burgerschool], the secondary school that focused on
the sciences.”” It was clear from the beginning though that the time had not yet come
to truly modernize the Dutch educational system: the traditionalistic Dijksterhuis
was asked to become a member of the committee, while Afanassjewa with her novel
methods was passed over.

She did not dwell on this defeat, as she was already busy with something else. In
1925, the Zeitschrift fiir Physik printed an article of hers that built on recent work
by Constantin Carathéodory®® and tried to give thermodynamics a firm axiomatic
basis.” By precisely defining concepts like “reversibility” and “thermal coupling,”
she was able to cast the Second Law of Thermodynamics into a new light, and she
also demonstrated that Kelvin’s and Clausius’s definitions of it are not equivalent.”
During the rest of her life, she would—with interruptions—continue to work on her
ideal of a more systematically organized thermodynamics. It would eventually result
in the book Die Grundlagen der Thermodynamik, published in 1956 by Brill, Leiden,
on her instigation and at her own expense.”®

Afanassjewa had high hopes for this book that expanded her ideas about thermo-
dynamics. “I believe my book relates to an introductory—and more experimentally
oriented—course (in thermodynamics), as Euclid’s Elements (no arrogance) relates
to an introductory geometry course,” she wrote to Einstein, to whom she had sent a
manuscript in 1947.%7 It is difficult to say whether she considered the book equally
fundamental as her 1925 article in the Zeitschrift. In any case, the article did not raise
as much interest as she had probably hoped for at the time. Physics had been shaken
up by Einstein’s theory of general relativity and it was right in the middle of the
quantum revolution. To most physicists, and especially to the younger ones, thermo-
dynamics seemed to be a topic from the previous century: old-fashioned. As a result,

87Eduard Jan Dijksterhuis (1892-1965) was a Dutch mathematics teacher and author of several
well-known books on the history of science with a focus on the role of mathematics: Klaas van
Berkel (1996).

83 Dijksterhuis (1924a—1925a).

89Ehrenfest—Afanassjcwa (1924a-1925a).

9Djjksterhuis (1924b—1925b).

91 Klomp (1997); De Moor (1999); Van Berkel (2000).

92Mandemakers (1996).

93 Carathéodory (1909), (1925).

94Ehrenfest—Afanassjcwa (1925a), (b).

95 Uffink (2001).

9 Ehrenfest-Afanassjewa (1956); Correspondence with Brill: EA-MBL 2.2.9:428.

97Ehrenfest-Afanassjewa to Einstein, 18 August 1947: The Albert Einstein Archives at the Hebrew
University of Jerusalem (AEA-HUJ), doc. 10-343.
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the novelty of some of Afanassjewa’s insights escaped them. As so often in her life—
—during her studies and in the debates about mathematics education—Afanassjewa’s
timing was off.

Did this influence her decision to return to Russia, where people appreciated her
work and were happy to invite her to teach and discuss educational reforms? Was
she under the spell of the enthusiastic stories about Soviet research that were told by
Russian academics, like Ioffe or Baumgart who came to visit Leiden? Between 1926
and 1933, Afanassjewa would regularly travel to her native country and stay there
for six to nine months to train mathematics teachers, who were so urgently needed
in the young Soviet Union and to help develop new teaching methods. She taught at
Simferopol (Crimea) and Ordzhonikidze (Caucasus), and she worked in Leningrad
and Moscow,”® but the brief remarks on her postcards to family members do not
reveal very much about her personal circumstances.”

1.8 Drifting Apart, the Downhill Slope

“You will feel embarrassed when walking next to me [again],” Afanassjewa, in
Moscow, wrote to Ehrenfest, in Leiden, in 1932, “because my coat is worn thread-
bare.”!% Postcards to her mother regularly expose the lack of organization at the
universities and polytechnic schools in the young Soviet Union. “I still do not have
much work here, since the fourth-year students whom I gave a practical course about
didactics, received their diploma before finishing this course. (...) I worked in good
harmony this year, but I have not been able to introduce new teaching methods, since
they [her students] already had traineeships at schools where teachers could not care
less about such methods,” she wrote, for example, during her stay in Simferopol.'*!

Yet, Afanassjewa seemed to believe in the socialist experiment taking place in her
motherland. In a letter for Galinka’s twenty-second birthday, written between two
trips to Russia, she urged her daughter, who loved drawing and painting: “Continue to
behave yourself properly, develop yourself and look for—I would really like that—a
possibility to perform useful work in Russia; find yourself a like-minded gentleman
and remember, in time, to also take an objective enough stance in these matters, that
is: such that you will not lose your capacity to work under any circumstance! What
else should I advise you? Most important is to have a goal that transcends the arts

98Ehrenfest-Afanassjewa (1928a, b, 1930a, b, 1931a, b). [All translated from Russian to Dutch by
Hans Driessen].

PKlein (n.5); Letters to relatives show that she mainly worked in Simferopol between 1926 and
1930 and in Moscow, where she stayed with the Mandelstam and Kagan families, from the end of
1931 until the middle of 1932; in Ordzhonikidze she worked from the end of 1932 until the middle
of 1933: EFA [translated from Russian to Dutch by Hans Driessen].

1OOEhrenfest—Afanassjewa in Moscow, to Ehrenfest in Leiden, 28 March 1932: EFA [translated from
Russian to Dutch by Hans Driessen].

101Ehrenfest-Afanassjewa in Simferopol to C. Afanassjewa in Leiden, 24 March 1930: EFA
[translation ibidem.].
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and to serve that goal through the arts: that is what makes art valuable. Illustrations
for children, posters to elevate the masses, those are marvelous! 102

Galinka ignored her advice. Like her father had done in 1924 and 1930,'93 she
traveled extensively through the United States and visited Ehrenfest’s older brother
Hugo, who was an influential gynecologist living in Saint Louis.!** The family, once
so close-knit, became dispersed. Ehrenfest, who was not as socialistically inclined
as his wife, but was still close to his Russian friends, traveled all over Europe and
sometimes into the Soviet Union as well. Vassik remained in his institution in Jena,
Germany. Tanichka, the eldest daughter who was a talented and skilled mathemati-
cian, made several trips to Moscow and the Crimea and stayed in Géttingen at length,
before devoting most of her time to her husband and six children.!% Pawlik was sent
to England and France to become more proficient in foreign languages.

In between such trips, Pawlik and Galinka were often home alone with baba
Katya who had grown old and deaf. Aunt Sonya, who had also been living in the
house in Leiden since 1916, had moved to Paris in 1929.!% She was unhappy with
Afanassjewa’s visits to Russia but “I will stop complaining about Russia now,” she
ended a long and reproachful letter to her niece in 1931, because: “you believe these
pretty stories of Bolsheviks like Ioffe, Kagan and the like anyway and do not want
to hear anything bad about them.”!?”

Afanassjewa and Ehrenfest were gradually growing apart, and Ehrenfest’s depres-
sions deepened.'”® He regularly withdrew into his private rooms, where he tinkered
with radios and wrote long and plaintive letters, alienating himself from his friends.
Fewer and fewer visitors came to the house in Leiden, especially since Ehrenfest
had told quite a few of them that he did not have much more to teach them. Increas-
ingly worried about the situation in Germany, he drew up lists of Jewish colleagues
in Germany who needed help and he toyed with the idea of giving up his chair in
Leiden for one of them.'” A love affair with Nelly Posthumus-Meyjes, an art critic
who was ten years his junior, destabilized him even more.!'”

Perhaps for the first time in her life, Afanassjewa did not know what to do. After
Ehrenfest had reluctantly told her that he wanted a divorce, she went to the Belgian
resort of Spa, completely exhausted.!'! Unexpectedly, she had “a merry time” with

102Afalnassjewa to Galinka Ehrenfest, 12 July 1932: EFA [translation ibidem.].

103Trips of several months in 1923/1924 and in 1931/1932: family correspondence EA-MBL 1.1.2;
Hollestelle (n.81).

104 Ashwal (1990).

105Ehrenfest (1931); N.G. de Bruijn, In memoriam T. van Aardenne-Ehrenfest, 1905-1984, Nieuw
Archief voor Wiskunde 3:4 (1985) 235-236.

106Family correspondence 1922-1933: EA-MBL 1.1.2.

107 Afanassjewa-Maslova to Afanassjewa, 1931: EFA [translated from Russian to Dutch by Hans
Driessen].

108 Hollestelle (n.81).

19Holestelle (n.81).

110van Delft (2014).

M Correspondence Ehrenfest-Afanassjewa (1932): EFA.
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Einstein, who had come to visit her there. “Could you in less than no time send
me my booklet ‘Ubungensammlung,’!'> because Einstein is really interested in it
and he would now have time to take a peek at it,” she wrote to Ehrenfest. “He is
very pleased with life here [in Spa] although some people already turned out to see
him yesterday, but that was a Sunday, perhaps they will leave him alone on working
days.”''3 Einstein, whose life was in danger in Nazi Germany, was still a hero to
many people in Belgium and elsewhere. Yet, who was in the better position to help
the other in these bleak and joyless times?

In 1933, when Einstein had fled Germany and was staying on the East coast of
England on his way to the United States, the news reached him that Ehrenfest had
died. His friend had eventually done what he had already announced, in greater
or lesser detail, in letters to his friends—some of which were never sent—in the
preceding months.''* Having first shot Vassily, who had meanwhile been transferred
to an institution in Amsterdam, he had then killed himself!! with an old Browning
revolver that he kept in a drawer.''®

1.9 Hardship with Integrity

99 <. 99 ¢

“Modest,” “full of energy for the things she believed in,” “pleasant,” “someone with
the capacity to really listen,” “an unusually strong and steadfast personality and his
[Ehrenfest’s] intellectual equal,” someone that faced “hardship” with “integrity.”!!”
That is how others characterized Afanassjewa’s personality, or her conduct in relation
to Ehrenfest. She would be in dire need of those qualities now, living as she did in the
large house with only her mother and her youngest daughter. The eldest daughter,
Tanichka, had moved to Dordrecht after her marriage. Pawlik was to leave for Paris
soon, where he would stay and work for along term with the physicist Pierre Auger.''®
Afanassjewa’s visits to the Soviet Union were a thing of the past: having witnessed
the Holodomor in Ukraine'!® in 1932 and having heard about Stalin’s atrocities, she
had decided not to return to the Soviet Union anymore.'?’

2y Ehrenfest-Afanassjewa (1931). The booklet contains exercises to increase the spatial
awareness of students during a preparatory phase in geometry teaching.

113 Afanassjewa to Ehrenfest, 15 August 1932: EFA [translated from Russian to Dutch by Hans
Driessen].

H4E o Pais (1991); Van Delft (n.110).
15E g, Hollestelle (n.81).
H6personal communication T. van Bommel.

17Van Hiele and Krooshof (1964a); Einstein (1934), [reprinted] in: Einstein (1950); Burgers (n.12)
51; personal communication H. Langedijk.

118pierre Auger (1899-1993) a French physicist who conducted cosmic ray experiments in which
Pawlik was taking part.
119The man-made famine in Ukraine, 19321933, in which millions of Ukrainians died.

1201 1932, Ehrenfest’s former student Jan Burgers gave up his membership of the Dutch communist
party, based on her advice. Personal communication Herman Burgers.
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More sorrow was to follow. In January 1939, Pawlik was killed in an avalanche
in the French Alps, doing what he liked best: skiing. World War II broke out. In
1943, her son-in-law, the painter and children’s book illustrator Jaap Kloot,"?! who
had married Galinka in 1941, was deported and killed in Sobibor. Galinka lost their
unborn child after she had been imprisoned in Den Bosch for a week.!??

Afanassjewa herself went back to teaching for a while. She taught Foundations of
Physics and Mathematics as a “privaatdocent,” a private teaching position associated
with Leiden University. She worked at the university from March 1941 till June
1942, when she resigned in protest because regulations to ban Jewish professors and
teachers were applied ever more strictly.123 However, her decision, in 1941, to teach
at the university at all, especially with her background, raised some eyebrows. It may
have been a strategic choice, made to protect Galinka and perhaps in order not to
draw undue attention to other people who were temporarily living in hiding at Witte
Rozenstraat 57 during the war years.'?*

Studying and writing were her lifeline during the remainder of the war and shortly
thereafter. It helped her through the days when the walls in the large house appeared
to close in on her, seemingly resonating with the laughter and voices from the past
and keeping her from falling asleep any earlier than five in the morning, as her
granddaughter remembers.'? It also resulted, among other things, in an essay enti-
tled Relevia a new economic system, an order in which I myself would like to live.
The booklet described a state with a government that was a mix of socialism and

1213acob Kloot (1916-1943) married Galinka Ehrenfest in 1941. Both wrote and illustrated children
books under the name El Pintor, which were published by Kloot’s publishing house Corunda in
Amsterdam. See, e.g., RKD Dutch Institute for Art History: rkd.nl/en/explore/artists/111285. In
daily life, Jacob and other family members used “Kloots” as their family name.

122Galinka Ehrenfest was arrested while visiting new addresses to hide Jewish relatives and friends.
She was released after one week in prison on 26 June 1943. Personal communication T. Van Bommel
and documents from the German Sicherheitspolizei in EFA. After the war she married Henk van
Bommel [n.13] and had a daughter with him.

123 Afanassjewa requested to be allowed to teach the basic principles of mathematics and physics
as a privaatdocent, associated with the University of Leiden in November 1940, shortly before the
dismissal of Jewish professors and the famous protest speech of Prof. Dr. Cleveringa (26 November
1940). After this speech, the university was closed temporarily at first and, when the German
authorities were unable to subject the university to Nazification, definitely in November 1942.
Afanassjewa was granted the position on March 10 1941. She requested that the authorities terminate
her contract on 11 May 1942. Her request was granted on 15 June 1942. The Secretary General
of the Department of Education, Science, and Protection of Culture to Afanassjewa, 10 March
1941, accepting her as privaatdocent; Ibidem.15 June 1942, terminating her contract at her request:
EA-MBL 2.5.

124Two sisters of Jaap Kloot stayed there temporarily: personal communication T. van Bommel. The
elder brother of H. Langedijk stayed there at the end of the war, in order to escape the Arbeitseinsatz
(forced labor and slavery in Nazi Germany) and during the week when H. Langedijk visited him,
close to the end of the war, she counted at least four other people in hiding, among whom was the
Jewish Mrs. Pinto: Personal communication. A certificate and letter testify that a tree was planted
in Afanassjewa’s honor in the “Joop Westerweel-woud,” Ramat Menashe, Israel, by Mr. and Mrs.
Schaap-Redak in 1946: EA-MBL, 2.2.32:453.

125personal communication.
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liberalism,'2® which Afanassjewa had often discussed with Galinka, as well as with
Ehrenfest’s former student Jan Tinbergen who used his training in physics to develop
the new field of econometrics and who would eventually be awarded a Nobel prize
(in 1969) for his efforts.'?’

Another work that Afanassjewa wanted to publish was her book: Die Grund-
lagen der Thermodynamik. She turned to Jan Burgers, who was a professor at the
Laboratory for Aerodynamics and Hydrodynamics of Delft University and also a
former student of Ehrenfest. At her request, Burgers passed on the manuscript to
Erwin Schrodinger in Dublin, who had just finished a short paper on statistical ther-
modynamics himself.'?® In the meantime, Afanassjewa had sent the manuscript to
Einstein, in the hope that he would take it upon himself to find her an American
publisher because, as she wrote to him, “in Europe there is not enough paper... and
even fewer big shots who can recommend my book to a publisher.”!?

Einstein had stayed in touch with the Ehrenfest family. Immediately after the
war, he had asked a friend of Helen Dukas, his secretary, to visit Leiden and to
find out whether the family members were all right.!*® For the next year and a half,
he regularly sent Afanassjewa food parcels,'?! until she asked him to send them to
Edmund Bauer in Paris instead because the Parisians suffered from hunger more than
she did in Leiden.'3? In the summer of 1947, Einstein again proved himself to be
“really a true friend,”'*? Afanassjewa wrote, because he immediately began reading
her manuscript.

She was not nearly as pleased with Einstein’s opinion once he had read the entire
manuscript. Her ideas seemed interesting and sound to him, and he thought that the
book should be published (“in English!”), he wrote. Yet, the text in its current form
was too long, and difficult to read. It had made him feel “a little bit” like a spectator
at ““a magician’s show with so many nice details to look at that one does not notice
when the frog of your unforgettable P.E. [Paul Ehrenfest] jumps into the water.”'3*
The frog was a reference to a well-known phrase that Ehrenfest had often used to
indicate the essence of a theory, a hypothesis, or a line of reasoning.

126Ehrenfest-Afanassjewa (1946).

127 Although Tinbergen did not necessarily agree with all Afanassjewa’s views, he arranged for
the work, which was published in 1946 at Boucher, The Hague, to be reviewed by the economist
Prof. Dr. H.J. Seraphim in Weltwirtschaftliches Archiv: Tinbergen to Ehrenfest-Afanassjewa, 16
July 1955: EA-MBL 2.2.9: 482.

128Schrodinger to Burgers, 22 March 1946: EA-MBL 2.2.9:482. In the following years, Schrodinger
would summarize his ideas in Schrodinger (1952).

129 Afanassjewa to Einstein, 17 August 1947: (AEA-HUJ), doc. 10-312.

130Dukas to Afanassjewa, 17 April 1946: EA-MBL 2.2.1: 418; Prue Smedts to Afanassjewa, 30
September 1945: EA-MBL 2.2.1:418.

131The parcels were prepared by Mimosa Food Parcels in New York: EA-MBL 2.1.
132Einstein to Afanassjewa, 28 March 1947: EA-MBL 2.1. Einstein comments on her request.
133 Afanassjewa to Einstein, 17 August 1947 (n.129).

134Einstein to Afanassjewa, 12 August 1947: EA-MBL 2.2.9: 482.
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It had been a deliberate choice by Afanassjewa to ignore both the frog and her own
ideas about didactics.'*® Instead of beginning with a more intuitive exploration and
then working toward a formal and axiomatic system, she had immediately plunged
into definitions, axioms and formal, logical reasoning. Yet, according to Einstein, she
gave the impression that “a logical cleaning devil [Putzteufel]” had taken possession
of her.!3® He added affably that he might not be authoritative in this case, since “I am
at the other extreme, dirty and economical with cleanliness.”'?’ Still, his conclusion
remained: Afanassjewa’s wish to tidy up the field of thermodynamics and describe
every concept and detail in a way that was too orderly and precise had rendered the
text a bit obscure. Moreover, Einstein did not know anyone who could be entrusted
with the translation of the text.

Afanassjewa protested to no avail. The “creative” Einstein was perhaps not
inclined to “cleaning devilishly,” she wrote, but “you did admit, that you learned
something from my presentation [of thermodynamics]: well, for this we are indebted
to the cleaning devil.”!¥ She continued ironically: “That you wash your hands of my
book, surely is very sad: I was hoping I could die in peace! What shall I do now?”,
but Einstein was too busy to reply.

Did Einstein realize how intensely Afanassjewa was invested in her work? An
ocean, the Second World War, and many years separated his European life from his
current American existence. How happy he had been in Leiden: lunch with Afanass-
jewa and her aunt Sonya, playing music with Ehrenfest, laughing and playing with
the children, walks through the streets of Leiden or along the beach at Noordwijk,
discussions on anything from politics to literature to physics. “Yes, that was really
a beautiful and tranquil time that we spent together,” he had written after one such
visit in 1919'3°—and many more joyful gatherings had taken place before Ehrenfest
sank into, and eventually drowned in, his deep depressions.

In November 1948, Afanassjewa picked up the thread of their friendship and
sent Einstein a handwritten letter: “Fortunately, I can look at your picture in some
newspaper now and then.” She continued by describing how her daughters were
doing and also referred to Ehrenfest. About herself she remarked only: “I feel more
fit now than two years ago: the years of hunger, cold—and worries—apparently
had a longer lasting influence.”'*’ Without further ado, they resumed their corre-
spondence, writing about physics, mathematics, and family. “Liebe Frau Ehrenfest,”
Einstein replied, in April 1953, to aletter in which Afanassjewa apologizes for having
forgotten his birthday.'#! “You are absolutely right not to burden your brain with dates

135See also (n.97): “I believe my book relates to an introductory—and more experimen-
tally oriented—course (in thermodynamics), as Euclid’s Elements (no arrogance) relates to an
introductory geometry.”

36Einstein to Afanassjewa (n.134).

1371bid.

138Afanassjewa to Einstein (n.97).

139Einstein to Ehrenfest, 9 November 1919: CPAE 9, Doc. 155. Also cited in Klein (n.5) 313.
140 Afanassjewa to Einstein, 28 December 1948: (AEA-HUJ) Doc.10-314.

141Einstein to Afanassjewa, 18 April 1953: EA-MBL 2.1.
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of birth. I receive your congratulations equally enthusiastically, no matter what day
of the year you pick.” It was to be one of his last letters to her.

1.10 Final Years in Her Own Sphere

Afanassjewa’s days were spent quietly now. To provide herself with an income, she
rented out the rooms on the first and the attic floor of her large house, she gave private
Russian lessons, and she taught a few courses at Leiden University.'*> She worked
in her garden, carried on a lively correspondence with her many friends abroad, and
continued to participate in debates about the didactics of physics and, especially,
mathematics.

After Ehrenfest’s death, her role in the community of mathematics educators had
become increasingly important. In 1936, three years after her husband died, she had
been asked to join the Dutch Wiskunde Werkgroep, a discussion group that met, almost
always at her house, to discuss possible educational reforms in The Netherlands.'*?
In 1938, she had been the central figure at a long weekend meeting of this Working
Group, presiding over the debates and introducing all speakers. After World War 11,
the influential mathematician and pedagogue Hans Freudenthal,'** who had called
her Ubungensammlung a “masterpiece” in the field of didactics of mathematics,'*’
had become so deeply inspired by her work that—in retrospect—it is not always easy
to see where her ideas end and his ideas begin.

Her work on thermodynamics and statistical mechanics drew less attention in
her later years. When Die Grundlage der Thermodynamik was eventually printed,
in 1956, she sent copies of the book to many acquaintances, but their reactions
were, at best, polite and certainly not enthusiastic.!*® Three years later, in 1959,
Cornell University Press published the well-known Enzyklopddie article on statis-
tical mechanics by the two Ehrenfests in an English translation.'*” Giving most of
the credit for this work to her husband, Afanassjewa herself writes in the preface to
the translation: “The great task of collecting literature and of organizing the Enzyk-
lopédie article was done by Paul Ehrenfest.” [...] “My contribution consisted only in
discussing with him all the problems involved, and I feel that I succeeded in clarifying
some concepts that were often incorrectly used.” These modest words were grist to
the mill of those who wanted to belittle her contribution to their collaborative efforts.

142[ ecture notes of her course on thermodynamics 1947/1948 are available in the Gorlaeus Library,
Leiden University.

143De Moor (1999).

144Hans Freudenthal (1905-1990) was a professor of mathematics at Utrecht University, who later
specialized in the didactics of mathematics. The Freudenthal Institute for Science and Mathematics
Education at Utrecht University is named after him. See also, e.g., Bastide-van Gemert (2006);
Molenaar (1994).

145De Moor (1993).
146 Correspondence: EA-MBL: 2.2.9:482.
147pay] and Tatiana Ehrenfest (1959).
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In their preface, Uhlenbeck and Kac take this division of labor for granted and write
that “The late Paul Ehrenfest” prepared the article “in collaboration with his wife.” In
his Ehrenfest biography, in 1970, Klein is equally neglectful of Afanassjewa’s work
on statistical mechanics, stating only that “Paul Ehrenfest was primarily responsible
for this article (...) as Tatiana herself wrote almost half a century later.”!48:149

Another short paper, on the notion of probability, appeared in the American
Journal of Physics in 1958. It was an adapted translation of a paper Afanassjewa
had published earlier in Russia, in 1911. At the time, it had served as an interesting
contribution to the debate,'*° but four decades later it did not add much that was new.
Nevertheless, these publications must have pleased Afanassjewa. They are enduring
proof that she had been a full-fledged scientist and not just a professor’s wife who
had stayed in the background and kindly received her husband’s colleagues while
taking care of the children. Similarly, it must have pleased her that, in 1961, the Dutch
mathematician Bruno Ernst took the initiative to put together a compilation of her
essays on the didactics of mathematics and publish them with a preface describing
her career. !

And so, Tatiana spent her final years in her own sphere, in a country that she
never fully came to appreciate, often together with what remained of her family.
Afanassjewa’s granddaughter still remembers how happy “baba Tanja” was when
she came to visit Galinka, who now lived in a small village in Limburg, as it was
one of the few Dutch provinces with hills and woods that vaguely resembled the
Russian forests.!>? Afanassjewa would never learn to like the flat polders surrounding
Leiden, or the city’s reserved inhabitants. In her own large house, she managed, until
the very end of her life, to maintain a somewhat Russian atmosphere, both with
regard to hospitality and intellectual challenges. “Until she died, her house at Witte
Rozenstraat 57 in Leiden has been a place where mathematics and physics teachers
went to verify and discuss new didactical insights,” her former colleagues wrote after
her death.'>3 “They never went home empty-handed.”’>*
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148K Jein (n.5) 121.

149Ehrenfest & Ehrenfest (n.147) 7-9.
150Ehrenfest-Afanassjewa (1958, 1911a, b, ¢)..
151Ehrenfest-Afanassjewa (n.17).

152private communication.

153 Afanassjewa died at her home in Leiden on 14 April 1964
154Van Hiele G. Krooshof (1964a).
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Chapter 2 )
Intuition, Understanding, and Proof: oo
Tatiana Afanassjewa on Teaching

and Learning Geometry

Marianna Antonutti Marfori

2.1 Introduction

Tatiana Alexeyevna Afanassjewa (from 1904 Tatiana Ehrenfest-Afanassjewa) was a
mathematician, a physicist, and a teacher. All three of these vocations come together
in her philosophy of geometry, which bases a novel approach to the teaching of
geometry on her understanding of the proper roles of intuition and logical reasoning
in geometry, grounded in our experience of concrete objects occupying physical
space. Having been a student at Gottingen during the time of its greatest flowering as
a centre of mathematical research, and a member of the physics community during
the revolutionary period from Einstein’s annus mirabilis of 1905, she was close to
the centre of some of the most exciting developments in science of her time. Since
early on she was also deeply invested in teaching, and in developing new and better
ways to communicate her subject to her students. Afanassjewa’s reflections on the
teaching of geometry are thus those of a mathematician and a theoretical physicist
who was passionate about scientific discussion and teaching: her ideas originate in
her own experience as a student, researcher, and teacher, and in the debates with her
scientific contemporaries—debates in which she played an active and important role.
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The focus of this paper is Afanassjewa’s philosophy of geometry and geome-
try education as espoused in her 1924 manifesto Wat kan en moet het Meetkunde-
onderwijs aan een niet-wiskundige geven? (What can and should geometry educa-
tion offer a non-mathematician?), Ehrenfest-Afanassjewa (1924a), translated into
English in this volume for the first time, and in her 1931 booklet of exercises
for an introductory geometry course Ubungensammiung zu einer geometrischen
Propddeuse (Exercises in Experimental Geometry), Ehrenfest-Afanassjewa (1931),
translated into English by Hoechsmann (2011)." The aim of this paper is to present
her ideas on geometry from a philosophical perspective, particularly her account of
the roles of intuition and logic in the teaching and learning of geometry, and the
relations between her ideas and those of the most prominent members of the Gottin-
gen school, Felix Klein and David Hilbert. It will also briefly explore how her ideas
about the teaching of geometry were received in the Netherlands, where she was to
spend most of her life. Her extensive international training and experience, her broad
intellectual culture, her curiosity, and her determination to go beyond conservative
dogmas of mathematical education led her to bring a radically novel approach to the
teaching of geometry in the Netherlands.

Afanassjewa’s philosophical views about intuition and logical thinking are also
similar in spirit to the pragmatist tradition, especially in the close connection she
posits between knowledge and understanding (and it is surely the case that she
was acquainted with Poincaré’s work, who is explicitly mentioned in Ehrenfest-
Afanassjewa 1924a). However, for reasons of space, these philosophical aspects of
her thought will not be analysed in this paper.”

Naturally, her studies in Saint Petersburg before she went to Gottingen, as well as
her engagement with the contemporary debate on mathematics education in Russia
also influenced her profoundly. Regrettably, this paper cannot engage with Afanass-
jewa’s writings in Russian, nor with Russian-language sources in general. Moreover,
due to a lack of detailed, accessible historical evidence—all the courses she fol-
lowed, who her main interlocutors in mathematics in the first three decades of the
century were, which books she had the opportunity to read, and when—it is diffi-
cult to determine in precisely what ways the Gottingen mathematicians and other
important figures such as Poincaré, Pasch, and von Helmholtz influenced her work
and thought.? Nevertheless, it will be argued below that her approach to geometry
has much in common with those of Klein and Hilbert. The following section there-

1Unless otherwise noted, all page numbers given for the manifesto refer to the translation in the
present volume, and all page numbers given for the Ubungensammiung refer to the translation by
Hoechsmann (2011).

2In this context, it would also be interesting to analyse the similarities and the differences between
Afanassjewa’s view and that of Ferdinand Gonseth. It is plausible to think that she was acquainted
with Gonseth’s work, as he is mentioned in the correspondence between Afanassjewa and Bernays
in the early 1950s. However, since the first philosophical work of Gonseth dates to 1926, 2 years
after the publication of Afanassjewa’s manifesto, such an analysis is beyond the scope of this paper.
31t is surprising that there is no correspondence between Klein and Afanassjewa, since Klein in
particular was an avid correspondent (for an idea of the volume of Klein’s correspondence, see e.g.
Schlimm 2013, p. 184). Neither the Gottingen University Library nor the Rijksmuseum Boerhaave,
which holds the Ehrenfest—Afanassjewa archive, hold letters between her and other Gottingen math-
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fore briefly describes some salient aspects of Klein and Hilbert’s work and interests,
namely, their work in geometry, their attitudes towards spatial intuition, and partic-
ularly in the case of Klein, how these interacted with their views on the teaching of
mathematics.

2.2 Gottingen

When Afanassjewa went to Gottingen in 1902, it must have seemed like the centre
of the world. Felix Klein was one of the world’s foremost mathematicians, “a Zeus,
enthroned above the other Olympians” as the physicist Max Born would later describe
him (Born and Born 1969, p. 16). David Hilbert, already famous in 1895 when Klein
brought him to Géttingen, had become even more well known after his 1900 address
to the International Congress of Mathematicians in Paris, in which he presented his
influential list of 23 mathematical problems. Moreover, both Klein and Hilbert had
done seminal work in geometry. In 1872, Klein had published his Erlanger Programm
(Klein 1872), in association with his appointment as a professor in Erlangen, in
which he outlined a radical new approach to geometry that involved understanding
a given geometry as characterised by the group of transformations under which it
remained invariant. Hilbert’s work in geometry involved a similarly grand vision:
his Grundlagen der Geometrie (Foundations of Geometry) (Hilbert 1899) aimed
to provide a completely axiomatic treatment of Euclidean geometry, including the
mutual independence and joint consistency of the axioms.

Both the Erlanger Programm and the Grundlagen der Geometrie were fruits of a
nineteenth-century revolution in geometry. For more than 2,000 years, the dominant
form of geometry had been that prescribed in Euclid’s Elements. While the status of
the parallel postulate had been debated since antiquity, there seemed little question
that the postulate was true; the issue was more the way in which it was to be justified.
All this changed with the work of Bolyai, Lobachevsky, and Gauss in the early part
of the nineteenth century, who showed that the denial of the parallel postulate did
not lead to a contradiction, but instead to new geometries beyond than the familiar
Euclidean one. The work of Riemann, Helmholtz, and Beltrami in the 1860s served
to convince mathematicians of the acceptability of non-Euclidean geometry (Gray
1992, p. 38), and a proliferation of different geometries followed. Klein’s Erlanger
Programm was intended as a way to unify these diverse geometries, bringing order
to what had become a messy discipline (Rowe 1992, p. 47). It accomplished this by

ematicians on topics related to her philosophy of geometry (though there is some correspondence
with Klein about the encyclopaedia entry on the foundations of statistical mechanics which she
authored together with her husband Paul Ehrenfest). The Kalliope Verbundkatalog Nachlisse only
lists correspondence between Afanassjewa and the physicist Gustav Herglotz. There is, however,
extant correspondence between Afanassjewa and Paul Bernays from the late 1940s and early 1950s,
mostly about theoretical physics, which can be accessed in the Bernays Nachlass at the ETH Zurich
University Archives. For a detailed list of courses of Klein’s that Afanassjewa attended while in
Gottingen, see the recently published Tobies (2020).
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providing a general scheme for classifying geometries in terms of their transformation
groups; two geometries were to be considered the same if their transformation groups
(that is, the set of transformations of the underlying space) were isomorphic to one
another. This also gave a way of separating the essential properties of a geometry
from the inessential ones: the essential properties were those which were invariant
under transformations.

Three other aspects of Klein’s views are notable in the present context: his intuitive
approach to mathematics, his interest in mathematics education, and his positive atti-
tude towards women mathematicians. In a marked divergence from many of his peers
at the time, Klein was a strong supporter of women in mathematics, believing that
they should have equal educational opportunities (Tobies 2019, p. 16), and pushing
for their admission to university courses (Tobies 2012, pp. 127-128; Tobies 2020).
Both Grace Chisholm, the first woman to obtain a Ph.D. in Germany, and Mary F.
Winston, the first American woman to obtain a Ph.D. in mathematics, obtained their
doctorates under Klein. His views were shared by Hilbert, who had a number of
female doctoral students and urged his colleagues to allow them to be admitted to
the university “for the sake of mathematics” (Tobies 2000, pp. 31-32). It was also
Hilbert who brought Emmy Noether to Gottingen and tried to have her admitted as a
Privatdozent: he is supposed to have protested, in the face of objections from other
members of the academic senate, that “This is a university, not a bathing establish-
ment!”. Mathematics at Gottingen in the 1900s therefore provided an environment
which was, at least for a German university of its time, accepting of women and
foreigners such as Afanassjewa.

Klein was a dedicated teacher, known for holding long meetings with his numerous
doctoral students as well as with his other collaborators (Tobies 2019, p. 10). From
the 1890s onwards, he also played an important role in the reform of mathematical
education in Germany and internationally (see e.g. Nabonnand 2007; Furinghetti
et al. 2013; Tobies 2019). Mathematics education was the theme of his inaugural
address at Erlangen in 1872 (Rowe 1983, 1985) and became an increasingly impor-
tant part of his work during his time in Gottingen. Klein felt that there was a lack
of widespread knowledge of mathematics in society. For Klein mathematics was
a formal educational tool for training the mind, and he claimed that mathematics
lessons at school were not “developing a proper feeling for mathematical operations
or promoting a lively, intuitive grasp of geometry” (Erlanger Antrittsrede, English
translation in Rowe 1985, p. 139). Klein therefore worked to improve mathemat-
ics education in universities and technical schools, as well as in secondary schools:
the Meran reform which took effect from 1905 onwards is sometimes referred to in
German as the “Klein’sche Reform”.

The “intuitive grasp of geometry” alluded to in his Erlanger Antrittsrede was
a central feature of Klein’s approach to mathematics. A well-known passage of
Poincaré presents some of Klein’s work on Riemann surfaces, in which Klein models
such surfaces by metallic surfaces with varied electrical conductivity, as a paradigm
of the intuitive approach to geometry. Poincaré comments that “Klein well knows he
has given here only a sketch; nevertheless he has not hesitated to publish it; and he
would probably believe he finds in it, if not a rigorous demonstration, at least a kind
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of moral certainty” (Poincaré 1913, p. 211). Klein placed an emphasis on intuition
in his teaching and writings, and especially on the use of “Raumanschauung” or
spatial intuition in geometry (Mattheis 2019). In the second volume of his textbook
Elementarmathematik vom hoheren Standpunkte Aus (Elementary Mathematics from
a Higher Standpoint), first published in 1908, Klein appeals to spatial intuition both
as giving content to the axioms of geometry and as an important method for students
to acquire geometrical knowledge (Klein 2016).

Spatial intuition comes together with teaching in Klein’s development and use of
physical models to represent geometric objects and structures. During his time at the
Technische Hochschule in Munich from 1875 to 1880, he founded a laboratory to
construct such models together with his colleague Alexander von Brill. These models,
commercially produced by Brill’s brother, later became widely used in mathematics
departments across Europe and the United States (see Rowe (1989, p. 191) as well as
Bartolini Bussi, Taimina, and Isoda (2010, p. 21)). Klein viewed such models as valu-
able for teaching but also, following his teacher Julius Pliicker, as tools for research
(Rowe 2013). In Gottingen during the period that Afanassjewa was there, the library
contained a large collection of such models, and in her exchange with Dijksterhuis,
Afanassjewa explicitly notes her appreciation for Klein’s use of wire and plaster
models of spatial curves and surfaces during his lectures (Ehrenfest-Afanassjewa
1924b, pp. 48-49, fn. 3). Under Klein’s guidance, the Gottingen mathematics library
was developed as a Prdsenzbibliothek: a reference library whose open shelves were
packed with journal offprints, as well as volumes containing the texts of lectures by
Dirichlet, Riemann, Hilbert, Klein, and others. Klein’s seminar notes alone, span-
ning almost the entirety of contemporary mathematics, filled 29 volumes of more
than 8,000 pages (Chislenko and Tschinkel 2007). The library was designed so as
to facilitate not just individual research, but also to encourage informal meetings
between mathematicians (Rowe 1989, p. 202). Klein himself was known to sit for
hours discussing with his students and collaborators.

The sea change that took place in mathematics during the nineteenth century had
another aspect, namely, the new importance attached to rigour. One manifestation of
this development was the so-called arithmetization of analysis: the refounding of the
calculus on the basis of set-theoretic constructions, together with rigorous definitions
of such notions as limit and continuity (see e.g. Grattan-Guinness 2000, Sect.2.7;
Giaquinto 2002, Chap. 1 and Ferreirés 2007). Some arithmetizers explicitly made it
their aim to displace geometric intuition, at least in a justificatory capacity, in favour
of principles they regarded as more rigorous. Richard Dedekind’s goal, for example,
was to replace geometric proofs of results such as the monotone convergence theorem
with ones that appealed only to a “purely arithmetic and perfectly rigorous foundation
for the principles of infinitesimal analysis” (Dedekind 1901, pp. 1-2).

Axiomatic approaches to mathematics were in some sense a natural endpoint of the
movement towards a rigorous methodology, with the only permitted inferences being
logical deductions from a collection of basic principles or axioms given in advance.
Geometry, with its Euclidean heritage, was a natural home for such an approach.
Moritz Pasch in his 1882 lectures Vorlesungen iiber Neuere Geometrie (Lectures on
Modern Geometry) (Pasch 1882) developed an axiomatic and deductive approach
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to geometry that was, unlike that of Euclid, “independent of figures”. Pasch’s work
was a major influence on Hilbert (Schlimm 2010, p. 93), whose Grundlagen der
Geometrie aimed to finish what Pasch had started and put Euclidean geometry on a
fully axiomatic footing.*

However, to see Klein and Hilbert as members of two opposing camps, one cham-
pioning intuition and the other championing rigour, does a disservice to both their
works and their philosophical and foundational views. As Rowe (1989, 1994) argues,
Klein had an appreciation for rigour and for the role that axiomatic thinking could
play in mathematics, and was an early advocate of Hilbert’s Grundlagen. Hilbert,
on the other hand, saw the need for intuition if we were to understand the axiomatic
proofs; it can be argued that on Hilbert’s view, intuitive knowledge of Euclidean
geometry was the chief motivation for pursuing an axiomatisation of geometry (see
also Sinageur 1993, p. 260; Corry 1999, p. 157 and Grattan-Guinness 2000, p. 209).

Much like Klein and Hilbert, Afanassjewa clearly recognised the importance
of both intuition and logical thinking in geometry: without intuition, geometrical
thought is impossible, but without logical thinking, we are unable to properly regi-
ment our intuitive thoughts and strip away inessential or misleading aspects. In her
1924 manifesto, Afanassjewa develops a foundational view of spatial intuition and
geometrical reasoning—that is, of the epistemology of geometry—together with a
theoretical and practical approach to teaching. Moreover, her approach to teaching is
based not merely on her foundational account of geometry, but on a clearly developed
philosophical picture of how human beings attain understanding in mathematics. It
thereby bridges the gap between theoretical or abstract knowledge of geometry, and
knowledge of the physical world. The exercises proposed in the Ubungensammlung,
and more generally her conception of the propaedeutic or introductory geometry
course, are carefully designed in accordance with her more general views about how
we come to learn geometry.

A distinctive aspect of Afanassjewa’s conception of intuition is that spatial intu-
ition is not merely a given, but is instead a faculty which can be developed through
systematic training. Unlike most other accounts of the faculty of intuition, both ear-
lier and subsequent, Afanassjewa’s account does not proceed in analogy with percep-
tion, nor is it conceived of as a uniquely psychological or heuristic aid to the pursuit
of mathematical knowledge. On her view, intuition is necessary for mathematical
understanding, for problem-solving, and for rigorous thinking, but not sufficient for
any one of these processes. In particular, Afanassjewa takes understanding to be a
fundamental aspect of knowledge, and in this sense, intuition is also necessary for
geometrical knowledge. While intuition can provide imprecise or inconsistent pic-
tures, knowledge of abstract statements is ultimately achieved through elaborating
the pictures provided by intuition by logical thinking, by isolating the salient aspects
of the intuitive pictures through abstraction and ordering them logically to obtain a
better—more precise, general, and consistent—intuitive picture than the initial one.

“More recent research in formalised geometry suggests that Hilbert’s axiomatic treatment in the
Grundlagen still contained gaps that had to be filled by diagrammatic reasoning and geometrical
intuition: see Meikle and Fleuriot (2003).
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Several important themes emerge from Afanassjewa’s proposals for reforming the
teaching of geometry. One is her deep concern for foundational issues: What is the
role of intuition in the teaching and learning of geometry? What is the role of logic?
How do intuition and logic relate to understanding? Should we conceive of geometry
as the science of space, or as an axiomatic system, or both? And if both, how do these
two aspects interact? Another is her desire for an account of geometry as a practice
carried out by both researchers and students, as opposed to a collection of theorems
of a particular area of mathematics: this is evident in the key role played in her view
by rigour and clarity in thinking and writing on the one hand, and understanding and
insight on the other.

Afanassjewa’s ideas are striking in their range, and in their richness. Despite
being expressed in a concise way, because she was engaging with educators and not
philosophers, her conception of geometry is clearly the product of a deep philosoph-
ical analysis and informs all of her writings on the subject. Nonetheless, there has
been no substantial discussion from a philosophical perspective of Afanassjewa’s
views of the roles of intuition and logic in geometry. The first English translation
of her 1924 manifesto provides an ideal opportunity to begin such a discussion.
This paper examines the ideas contained in her manifesto, also taking in account her
dispute with Dijksterhuis in the pages of the journal Bijvoegsel van het Nieuw Tijd-
schrift voor Wiskunde that immediately followed the publication of the manifesto,
as well as her 1931 collection of exercises for an introductory geometry course, the
Ubungensammlung. Its aim is to provide a clear presentation of Afanassjewa’s ideas
about intuition, understanding, and geometry education, from a philosophical point
of view. In doing so, it aims to help make the philosophical aspects of her work
better known, stimulate a growing interest in her ideas, and act as a starting point for
further research. In particular, it would be valuable to develop a more encompassing
analysis of her work by taking into account how she influenced, and was influenced
by, contemporary work on mathematical education in Russia, and how her views on
mathematical education developed after the manifesto and the Ubungensammlung
in her later work in Dutch, including through her interactions with Freudenthal (for
a discussion of her influence on Freudenthal see La Bastide-van Gemert 2015; Smid
2016; for a discussion of her legacy in mathematics education in the Netherlands see
De Moor 1993; Smid 2009; Furinghetti et al. 2013).

Afanassjewa was a strong advocate of the cultural importance of teaching geom-
etry in schools as a way to develop and train rigorous reasoning skills. The next
sections will introduce her view, starting from the initial question of what makes
geometry education valuable for everyone, regardless of their future educational and
career trajectory.

2.3 The Value of Geometry Education

Both the manifesto and the Ubungensammlung open with a compelling defence of
the value of geometry education in schools. According to Afanassjewa, the value of
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teaching a given school subject resides in the transferability of the methods of treating
problems in that subject: when a student internalises the methodology of that subject,
they should be able to use it fruitfully in other areas of reasoning. The reason why it
is desirable to teach geometry in schools thus depends on the reason why geometrical
methods can be fruitfully applied in other areas of reasoning. This is best explained
by distinguishing between two main ways in which mastering geometrical method
is useful to everyone, including those who will not proceed to further study or an
occupation that involves geometry or mathematics in any way.

First, the ability to adequately see and visualise space—i.e. to be familiar with spa-
tial relations—is useful to everyone, because it is valuable to perceive and manipulate
spatial relations as fast and accurately as possible in the many different situations
in which we encounter spatial problems. These range from instinctively making a
quick movement to avoid a sudden danger, to moving furniture and figuring out
whether an oddly shaped sofa can pass through a doorway; from performing cre-
ative activities such as drawing, sculpting, or designing and sewing clothes, to the
aesthetic enjoyment of different forms of art and of architecture, or the study of
school subjects such as geography, mechanics, physics, etc. The need to possess
adequate knowledge of spatial relations arise from our interaction with and experi-
ence of the physical world, and therefore merits special study: spatial imagination
should be developed from childhood just as much as a musical ear or physical skills
(Ehrenfest-Afanassjewa 1924, pp. 1-2).

Second, the geometrical method is characterised both in historical and in con-
temporary mathematics by its striving for the utmost clarity (Ehrenfest-Afanassjewa
1931, p. 3). What different strategies for problem-solving in geometry have in com-
mon is that a given problem is not set aside until it has become entirely transparent,
the result is formulated in the clearest manner, and all the results thus obtained form
a coherent, well laid out system. Since harmony, coherence, and logical order are
the methodological ideals of any intellectual enquiry, it is clear that mastering the
geometrical method has a very high educational value (Ehrenfest-Afanassjewa 1931,
pp- 2-3). However, one might object that the former aspect of the value of geometry
education is independent of the latter: knowledge of geometrical theorems is not nec-
essary for knowledge of spatial relations, and indeed, the opposite may be true. When
using spatial visualisation in action, knowledge and thinking often delay action or
lead to less effective action: as Afanassjewa acknowledges, Pythagoras’ theorem is of
little use to “a painter, a cox, a hunter, or a cyclist (Ehrenfest-Afanassjewa 1924, pp.
1-2)".5 Even in contexts in which the knowledge of certain quantitative spatial rela-
tions is important, it could be argued that the Euclidean framework is disposable, and
that the development of spatial visualisation and the practice of its applications would
be more useful than the teaching of Euclidean geometry. These considerations show
that the question of whether Euclidean geometry should be taught in schools, and if

31t should be noted that on Afanassjewa’s view, not only is knowledge of geometrical theorems not
necessary for knowledge of spatial relations, it is also not sufficient. Her objections to the teaching
of geometry by means of an axiomatic presentation of Euclidean geometry, and the relation of such
a course to the development of spatial imagination, will be discussed below.
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so, whether it should be presented axiomatically or through practical applications,
is independent of the question of how best to develop spatial imagination.

The reason why Euclidean geometry should be taught in schools has rather to
do with the most distinctive aspect of the geometrical method, namely, that it is
characterised both in historical and in contemporary mathematics by its striving
for the utmost clarity. The axiomatic treatment of spatial relations in geometry has
reached a particularly high level of logical rigour, and it is thus to be expected that
familiarity with geometry should have a positive effect on students’ reasoning abil-
ities, thereby demonstrating the particular cultural value of training in geometry
(Ehrenfest-Afanassjewa 1924, p. 2). In this, Afanassjewa agrees with E. J. Dijkster-
huis, the most vocal opponent of her manifesto. Dijksterhuis stresses the role that
learning mathematics plays in learning to think, which he calls “the most precious
fruit of a mathematical education [ . . .] the purity and honesty of mathematical think-
ing and speaking [ . . . and ] the spiritual discipline, order and purity that mathematics
pursues” (Dijksterhuis 1924a, p. 11, author’s translation). Dijksterhuis’s strong neg-
ative reaction to Afanassjewa’s work should therefore not mislead us into thinking
that their disagreement also extended to the ultimate value of geometrical education
(La Bastide-van Gemert 2015, p. 139).

According to Afanassjewa, it is no coincidence that spatial relations have been
the focus of deep logical analysis: we attach a high value to the organisation of our
own thoughts in a logical manner, obtained by reflecting on our experience, and we
all at some point experience the desire to express our experience and communicate it
effectively to others (Ehrenfest-Afanassjewa 1924, p. 3). Doing so involves express-
ing clearly what we see intuitively, in a way that brings out what is essential to the
speaker. This ability is what makes and has made scientific practice, including scien-
tific collaborations and the sharing of scientific knowledge, possible throughout the
centuries. In this respect, geometry enjoys the simplest and clearest form among the
subjects of human thought, perhaps with the exception of the rest of mathematics.
With respect to mathematics, however, the material of geometry has the unique ben-
efit of being given in perception, however imperfectly, and is thus familiar to every
human being from their own experience of the physical world.

It is this cultural value that justifies the teaching of Euclidean geometry as part
of the school curriculum, including teaching it to people who do not have an apti-
tude for mathematics and who will not come into contact with mathematics or its
applications in their future life. The fact that the value of mathematics education is
doubted by many is, for Afanassjewa, to be ascribed to the current curriculum and
exam requirements, which lack precisely those features that would allow the study
of mathematics in schools to play its proper role in the development of students’
thought. What these features consist in is the main subject of the manifesto and the
Ubungensammlung zu enier geometrischen Propiideuse. In the next section, I will
present Afanassjewa’s conception of scientific practice and geometric methodology,
with a focus on the role that intuition plays in these contexts.
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2.4 Intuition, Understanding, and Logical Thinking

Although many mathematicians in the nineteenth century, particularly within analy-
sis, worked to develop a new standard of mathematical rigour that eliminated appeals
to geometrical intuition, an opposing school of thought held fast to the value of intu-
itive reasoning (Torretti 1978; Gray 2010, 2019). Figures such as Klein, Poincaré,
and Brouwer occupied a prominent position among those promoting a new, more
positive attitude towards mathematical intuition (Glas 2002; Gray 2008; Heinzmann
and Stump 2017; Gray 2019). Tatiana Afanassjewa’s view sits squarely within this
current of thought.

2.4.1 The Role of Intuition

According to Afanassjewa, “Without intuition no thinking is possible” (Ehrenfest-
Afanassjewa (1924), p. 4, emphasis in the original). Intuition is what provides the
mental representation of a certain material, which is then processed by conscious
thought. More precisely, she argues that two steps should always be distinguished
when acquiring insight into a certain issue: (1) seeing a certain feature in the intuitive
picture that we have in mind, and (2) bringing this feature to awareness. The latter—
which Afanassjewa calls logical thinking—is fundamental to all the steps of the
reasoning process such as grasping and ordering what is initially represented in
our intuitive picture, identifying the gaps and contradictions in it, attempting to
fill those gaps, and finding the origin of any inconsistencies. The former, i.e. the
material that is processed in the way just described, is the intuition. The content
of intuition can be concrete, i.e. consisting of sensory perceptions, or abstract, i.e.
consisting in the result of a previously analysed representation. Intuition can, if not
processed logically, lead to mistakes and inconsistencies; this is not a fault of intuition
itself, but rather a failure to employ appropriate reasoning tools to treat the intuitive
material logically. Not every intuitive element of our representations has a place
in “the complete intuitive picture” (Ehrenfest-Afanassjewa (1924), p. 4, emphasis
in the original), and elements that are in contradiction with the whole should be
identified and replaced by an appropriate, yet intuitive, element. It is compatible
with this conception of intuition that this intuitive material can be communicated
without the awareness proper of the process of logical thinking, and also that it can
be ordered, albeit in an unconscious way. Afanassjewa stresses that this experience
is commonplace in mathematical practice, and she recalls Gauss’s famous saying
that theorems were clear in his mind a long time before he knew how to find a proof,
and an observation by Poincaré about the necessary role of intuition in searching and
finding mathematical facts before a proof is reached (Ehrenfest-Afanassjewa 1924,
p. 4; see also Footnote 3). This can happen because it is possible for someone to
have a clear intuition of a certain subject and make purely logical, non-contradictory
statements about the subject in question, and yet not be thinking logically in the sense
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discussed above. In such a situation, the failure in logical reasoning will be manifest
once one can only acquire insight by searching it consciously: it will be impossible
to reach and formulate clearly such insight unless an adequate logical analysis of the
intuitive picture has already been carried out.

This view is in some respects close to Klein’s view of the role of intuition. Klein
also held that spatial intuition is central to both the learning and the teaching of
geometry, and that it can be developed by experience, as becomes clear when one
considers Klein’s use of physical models of geometrical objects and structures as a
prompt to develop spatial intuition.® However, on Klein’s view any intuitive picture
is essentially indeterminate and thus does not meet the standards of rigour of geo-
metrical thought. In particular, intuition is not, by itself, sufficient to deliver precise
geometrical notions or precise geometrical propositions: it can sometimes lead us to
contradictory geometrical statements without providing sufficient means to decide
between them. These issues can only be adjudicated by developing what Klein calls
“refined intuition”, i.e. by unfolding the logical consequences of exact axioms (see
Klein 1893, p. 226; Mattheis 2019, p. 97 and Torretti 1978, Sect.2.3.10, p. 147).

In a different way, Afanassjewa’s view is also somewhat close in spirit to that
of Poincaré, who thought that intuition (interpreted as an element of understanding)
is necessary for mathematics both in the context of discovery and in the context
of justification (Heinzmann and Stump 2017). Even though Afanassjewa does not
distinguish explicitly between these two contexts and roles of intuition, both are
present in her view: the role of providing a visual representation to be analysed and
ordered by logical reasoning, and the role of providing insight in the process of
solving a mathematical problem (for a discussion of the distinction between these
two kinds of intuition and their role in different historical periods of mathematics,
see Arana 2016). Note, however, that Poincaré had a different stance on geometrical
intuition, maintaining that appeals to intuition should be completely dispensed with
in geometry (for a discussion of Poincaré on geometrical intuition, see Heinzmann
and Stump 2017 and Heinzmann 2013, as well as Gray (2008, 2019) for more general
discussions on the epistemology of geometry).

Hence, Afanassjewa argues, both everyday experience and mathematical practice
show that we can have insight—an intuitive picture of a given object—and even
perform actions that are not guided by explicit logical reasoning, but that the opposite
is not the case: logical thinking can only happen if an intuitive picture is provided first.
Even when intuition imposes a certain degree of order on the intuitive representation,
itis only by employing logical reasoning that such intuitive representations are clearly
formulated and logically ordered (Ehrenfest-Afanassjewa 1924, p. 5) . As seen above,
an intuitive picture that has not been processed through logical reasoning is liable to
contain mistakes and inconsistencies, and the constitutive aspect of logical thinking
consists precisely in the bringing to awareness of the logical relations that hold
between the statements that describe the intuitive picture. Without such material
being provided by intuition, no logical thinking would be possible at all.

SFor an analysis of the role of intuition in Klein’s conception of geometry education, see Mattheis
(2019) and Rowe (1985).
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It may be argued, against Afanassjewa, that the process of obtaining scientific
knowledge is not simply the process of logically treating our intuitive representations,
but is in fact the process of replacing intuition by logic and insight by scientific
explanation or mathematical proof (Ehrenfest-Afanassjewa 1924, pp. 4-5). Some of
Afanassjewa’s own observations seem to conform to this view. She explicitly claims
that “The actual work of logic happens at those moments in which intuition is brought
to consciousness”: the main difficulty in formulating a mathematical proof is that
of making the essential premises explicit, and once this is done, a clear presentation
of the proof does not require comparable effort. A clearly formulated mathematical
proof is the evidence that a given intuitive material has been adequately analysed:
as such, mathematical proof is the mark of scientific reasoning in mathematics. In
what sense, then, is intuition essential to science in general, and to mathematics and
geometry in particular? Afanassjewa’s answer to this question hinges on the role that
she assigns to understanding within the attainment of knowledge.

2.4.2 Understanding and Logical Thinking

Mathematical proof, conceived of as a logical concatenation of inferences, is not,
as Afanassjewa puts it, “the instrument itself of thinking (Ehrenfest-Afanassjewa
1924, p. 4)”: neither problem-solving, nor mathematical understanding, stem from
constructing or surveying a logical concatenation of inferences.

A proof constitutes the end result of a thinking process; sometimes, it can also
constitute the beginning step for new research. However, looking for the solution
to a mathematical problem does not proceed by concatenating inferences logically.
According to Afanassjewa, problem-solving is the result of shaping a mathemati-
cal question in the most effective way, and becoming aware of what precisely is
being searched for (Ehrenfest-Afanassjewa 1924, p. 5). As she also remarks in the
Ubungensammlung, nothing essentially new can be found by means of a prescribed
recipe, precisely because the essentially new is unknown: we do not know where to
find it, how to find it, or even that what we are looking for really exists (Ehrenfest-
Afanassjewa 1931, pp. 2-3). For example, mastering Euclidean geometry does not
give us any recipe for finding new directions of research in geometry. On this point,
Afanassjewa agrees with Poincaré, who argues that “Pure logic could never lead us
to anything but tautologies; it could create nothing new; not from it alone can any
science issue” (Poincaré 1958, p. 19).

Analogously, mathematical understanding is not achieved merely by checking a
rigorous proof step by step. For example, it is easy to see that there must exist a
relation between two sides and an angle of a triangle, and its third side. On the other
hand, it is not equally easy to see that in the case of a right angle this relation is
expressed by the Pythagorean theorem (Ehrenfest-Afanassjewa 1924, Footnote 6).
What produces understanding, instead, is seeing the intuitive connections at every
step of the proof: merely checking a rigorous proof step by step without an intuitive
understanding of each step of the proof will lead one to consider the statement in
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question temporarily proved, but not understood (Ehrenfest-Afanassjewa 1924, p.
4-5; footnotes 4 and 9). In brief, there can be no mathematical discovery and no
understanding without intuition, and this is why intuition is necessary for science as
much as systematic theories are.

What, then, is the relation between intuition and understanding, and logical think-
ing? Answering this question requires an analysis of the roles of two other reasoning
processes that are necessary for mathematical proof, and ultimately, for scientific
thought in general: abstraction and calculation. Intuition plays a role in both pro-
cesses; the analysis of this role sheds light on the relation between understanding
and the processes of abstracting and calculating.

A clearly formulated mathematical proof, as discussed above, is a sign that an
issue has been deeply analysed by means of logical thinking. The process of treating
an intuitive representation logically takes place when an intuitive picture is brought
to awareness, namely, when one abstracts from the object intuitively represented
by ordering the intuitive material and selecting only the relevant features, and when
one considers the formal relations between the statements that describe the object
(Ehrenfest-Afanassjewa 1924, pp. 5-6). More specifically, we abstract when we
are interested in understanding a specific property of an object that we do not yet
understand but that we think is important to understand, so we identify and isolate
only those elements of the intuitive picture that are relevant to that property and its
understanding, and put the other elements in the background. It is for this reason that
intuition is also necessary for abstraction.

The subsequent operation of considering the formal relations between statements
that describe the object is best characterised as calculating, rather than logical think-
ing (Ehrenfest-Afanassjewa 1924, p. 5). What Afanassjewa calls “calculating” is a
key component of scientific research, and in this context, intuition is important in a
number of ways. Firstly, the thinking relation between the agent and the object that
is represented is an intuitive one. Secondly, the relations of subsumption between
the statements in question and the formal-logical structure of each statement are
themselves understood intuitively before they can be formulated consciously. Lastly,
the gaps in the intuitive picture can only be closed by using spatial imagination.
To illustrate the difference between logical thinking and calculating, Afanassjewa
mentions the algebraic treatment of formulas in physics: thinking logically about the
algebraic relations that hold between the formulas in question is not an instance of
thinking logically about the physical relations themselves, but an instance of cal-
culating algebraically certain formal relations that are represented in the formula.
Hence, calculating cannot, by itself, lead to understanding.

While nothing essentially new is discovered by means of a proof, new conse-
quences can be drawn by mere calculation or by manipulations according to the
rules of formal logic. Knowledge obtained by mere calculation, however, is differ-
ent from knowledge obtained by logical thinking because the latter always leads to
certain conclusions, while the former can easily be wrong, unless, as in the case of
intuitive representations, it is treated logically and assigned a place in the original
intuitive picture, i.e. made consistent with it. From this we can see clearly the sense
in which for Afanassjewa, logical thinking is distinct from the mere drawing of infer-
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ences by means of applying the rules of formal logic, and is a much more complex
cognitive and epistemic process.

These considerations support Afanassjewa’s view that intuition is necessary for
science (and for mathematics in particular) not merely as the faculty of thought that
provides the raw material to be processed by means of logical thinking, but also
because intuition is necessary for understanding, which is necessary to the pursuit of
knowledge. In the next section, Afanassjewa’s conception of intuition and of logical
thinking will be connected to her conception of geometry teaching, which reflects
her view on the value of geometry education presented in Sect.2.3.

2.5 The Study of Space and the Axiomatics of Geometry

Afanassjewa’s distinction between intuition and logical thinking is reflected in her
distinction between the study of space and the axiomatics of geometry, two disciplines
that she argues have been conflated since Euclid’s time. The intuitive material in the
study of space is given by spatial imagination, whose content is constituted by sensory
perceptions, while the intuitive material in axiomatics is given by the axioms, which
are distilled from the spatial relations that are the subject matter of the study of
space, or by the theorems, that result from a former logical elaboration (Ehrenfest-
Afanassjewa 1924, pp. 5-6). But how do we get from sensory perceptions to an
axiomatic system for geometry?

On Afanassjewa’s view, building an axiomatic system means “creating order out
of chaos” (Ehrenfest-Afanassjewa 1931, p. 4). This can be achieved by bringing
together—not necessarily in a systematic way—the following elements: (a) isola-
tion of the features that identify the area of research in question; (b) formulation
of the initial problems with sufficient clarity; (c) identification of the primitive con-
cepts, i.e. concepts to which the other concepts in the same area can be reduced;
(d) identification of the elementary relations between these concepts—given in the
axioms—from which all other relations can be deduced as logically necessary con-
sequences; (e) identification of the most appropriate style of presentation for that
system (Ehrenfest-Afanassjewa 1931, p. 4). In the case of geometry, we first logi-
cally analyse spatial imagination in order to identify the most fundamental spatial
relations, and the spatial relations that go beyond our immediate spatial imagination.
The truth of the statements that describe the most fundamental spatial relations is
easily recognised on the basis of our experience of the physical world, while the truth
of the statements that describe the spatial relations that go beyond our immediate
spatial imagination is recognised by seeing the connections that hold between them
and the fundamental spatial relations that are most familiar to us from experience.
Secondly, these relations are then clearly formulated, so that only a few elements of
the intuitive picture are “displayed”, and their fundamentality is proved by showing
that all the other spatial relations can be logically deduced from the fundamental
ones. The result of this analysis is a logically coherent and elegant system of axioms.
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For Afanassjewa, the statements that are eventually called “axioms” are indepen-
dent statements, i.e. statements that cannot be logically derived from other axioms
(Ehrenfest-Afanassjewa 1924, p. 6)—a conception that had been established by
Hilbert’s seminal work on the foundations of geometry (Hilbert 1899). Their func-
tion is to lay out the elementary relations between the fundamental concepts of an
area of mathematics, thereby providing an insightful picture of that area that allows
scientific communication. However, by carrying out the process of logical analysis of
our sensory perceptions, our knowledge of space becomes both richer and clearer—
much more so than the intuitive picture that we can form on the basis of the axioms,
without having formulated them ourselves. In other words, “seeing the truth of the
axioms is not the same as having them at one’s disposal (Ehrenfest-Afanassjewa
1931, p. 4)”: the Euclidean axioms will seem obvious to nearly everyone they are
presented to, but this does not imply that those who recognise this are also aware
of spatial laws and concepts. For example, it will not occur to the person who is
unaware of spatial laws and concepts that the relevant spatial relations encountered
in activities such as packing, moving furniture, cutting cloth, etc. can be reduced to
planar problems. Hence, axioms are at one’s disposal only when a deep understand-
ing of the fundamental spatial relations has been achieved, and such relations have
been logically ordered in the sense described above (Ehrenfest-Afanassjewa 1931,
p. 6).

Despite the praise reserved for geometry and the geometric method, if the term
“logical” is taken to indicate what is free from contradiction, well arranged, and
transparent, Afanassjewa claims that it should only be used in connection with the
Euclidean style of presentation, which orders the visually given material in such a
way that the theorems follow one another naturally (Ehrenfest-Afanassjewa 1931,
p- 2). As she writes in her manifesto (Ehrenfest-Afanassjewa 1924, p. 12), until the
beginning of the twentieth century much emphasis was put on the formal-logical
side of thinking, which was also emphasised in geometry education as shown by the
school curriculum in several European countries including the Netherlands, where
she had moved in 1912. The failure of this model of teaching geometry brought about
a movement of teachers questioning the systematic approach to geometry education
and aiming to teach geometry in a way that develops “intuition”. However, both the
systematic and the experimental sides of this debate are, according to Afanassjewa,
guilty of the same sin: they focus only on the importance of one aspect of the faculty
of thinking, either logical or intuitive, when each is just as necessary as the other
to mastering geometrical thinking. This misconception arises from their shared and
overly narrow conception of the subject matter of geometry and the according value
of geometry education, namely, to teach students the contents of certain theorems of
Euclidean geometry (Ehrenfest-Afanassjewa 1931, pp. 1-2).

Instead, according to Afanassjewa, the aim of geometry education is to achieve
an intuitive picture of the subject that is much more developed and precise than the
initial one, and that is well understood (Ehrenfest-Afanassjewa 1924, p. 6). Thus,
she argues that geometry education can be most useful to the development of both
spatial imagination and logical thinking only when intuition is accorded its proper
role in the process of thinking (see e.g. Ehrenfest-Afanassjewa (1924), pp. 2-3).
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2.5.1 The Systematic Approach

The systematic approach to geometry education advocates teaching geometry
axiomatically, i.e. as it is presented by Euclid in the Elements. The usual assump-
tions behind this approach are either that understanding of spatial relations is obtained
synthetically with the help of the axioms of geometry, or that the necessary spatial
intuitions are possessed innately by everyone, and it is thus sufficient to build on
that by unfolding the proofs before the students. As discussed earlier in this section,
Afanassjewa believes that the value of axiomatics consists in revealing the logical
relations between geometrical propositions, and that for this reason the Euclidean
style is the most appropriate way of presenting geometry, and a paradigm of logical
thinking. This motivates Afanassjewa’s belief that axiomatics is a key component of
the study of geometry, and her belief in the high practical value of making geom-
etry part of the school curriculum (see also Sect.2.3 above). Since, however, the
axiomatic method is not the method by which understanding is achieved, teaching
Euclidean geometry axiomatically will not lead to the desired results of teaching stu-
dents fundamental facts about spatial relations and providing them with the ability
to think logically (Ehrenfest-Afanassjewa 1924, pp. 8-9), contrary to what the advo-
cates of the systematic approach to geometry education, such as Dijksterhuis, argued
in response to the manifesto (Dijksterhuis 1924b; De Moor 1993; de Moor 1996).
According to Afanassjewa, the desired results can only be obtained if the geometry
course is designed not only to expose students to logical thinking in the manner of
Euclid, but also to create the basis for logical thinking, namely, a sufficiently trained
spatial intuition and the curiosity to analyse it logically.

Afanassjewa identifies three factors, whose roots lie in the current curriculum,
that contribute to students’ lack of interest in logical thinking and the axiomatics
of geometry. The first is new or misleading terminology: for example, the term
“proof” is used in the study of space to indicate an argument that provides insight
into the correctness of a proposition whose truth is already accepted on the basis of
our sensory experience. In the axiomatics of geometry, on the other hand, the term
“proof” indicates an argument that logically traces the theorem back to the axioms.
This means that when taking the systematic course, the students may find themselves
in the position of accepting that a certain theorem has been proved and yet not realise
that it is valid of the physical world. Alternatively, they may not appreciate why a
completely obvious statement about physical space requires proof. This is sometimes
obviated by the teacher by encouraging the students to doubt their knowledge of that
statement in order to see it eventually established by rigorous proof (Ehrenfest-
Afanassjewa 1924, p. 7; Ehrenfest-Afanassjewa 1931, p. 3). However, according to
Afanassjewa, this method only produces the effect of making the students doubt
science and the scientific method in general, regardless of the fact that different
students have different ideas about what statements count as obvious. Such obstacles
can be overcome by making the students acquainted with the statements that are
axiomatised in Euclid’s system prior to their study of axiomatic geometry, i.e. by
teaching the students the study of space before they get to study the axiomatics of
geometry (Ehrenfest-Afanassjewa 1924, pp. 7-8).
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The second factor discouraging students from being interested in the axiomatics of
geometry is the lack of spatial imagination. It is not surprising that axiomatic proofs
are not learnt by the students when proofs are taught, e.g. by making students repeat
them and waiting until they become accustomed to the proving style, and thereby
become clearer thinkers. The reasons are those discussed in Sect.2.4.2: Euclidean
geometry presents an exceptionally clear summary of the results of logical thinking,
but it does not reproduce the process of thinking itself. In order for the students to
benefit from learning the axiomatics of geometry, the students must first achieve the
results by themselves (Ehrenfest-Afanassjewa 1924, pp. 8-9).

The third factor concerns the logical elaboration of the material and the risk of
overloading the course. It is better to cover less material but in a more careful and
detailed way, i.e. in one that makes the student appreciate the benefit of axiomatics
and teaches them logical thinking that can then be applied in other areas. If, on the
contrary, the student learns several theorems but does not understand them, then when
confronted with a new problem the student will use a formula that has been successful
before, as opposed to working through the problem themselves. This problem can
be overcome by explaining the goals of axiomatics at the start of the course and by
making students acquainted with spatial relations before studying the axiomatics of
geometry, so that the systematic course presents itself as a useful and elegant analysis
of solutions to practical problems concerning physical space (Ehrenfest-Afanassjewa
1924, pp. 9-10).

Does the experimental approach address these issues adequately?

2.5.2 The Experimental Approach

The experimental approach (or “laboratory method of education”) aims to develop
spatial imagination by teaching geometrical propositions empirically, i.e. by making
students practice the application of geometrical theorems to practical problems (for
example, through measuring, cutting, and drawing), thereby verifying their correct-
ness (Ehrenfest-Afanassjewa 1924, section 8.4, and Ehrenfest-Afanassjewa 1931,
section 5). While Afanassjewa praises this approach as coming closer to developing
students’ spatial intuition than the systematic approach, in her view, it suffers from
serious limitations.

A major limitation of this approach is that it fails to distinguish the contribu-
tion that the visual investigation of a theorem brings to the development of spatial
imagination from the contribution that the manipulation of measurement brings to
the verification of the theorem. Very often, measurement does not contribute to the
development of spatial imagination: e.g. when students are asked to measure a cir-
cumference with a tape measure and determine how many times the diameter is
contained in it, the visual picture does not provide any compelling reason for the
ratio to be one number rather than another. On the other hand, when the students are
asked to inscribe a regular hexagon in a circle, they can thereby both see and prove
that the hexagon’s perimeter is equal to 6 radii, but smaller than the circumference
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(Ehrenfest-Afanassjewa 1931, pp. 8-9, fn. 1). That is, in order to internalise a visual
proof completely, the student needs to already possess a sufficiently developed spa-
tial imagination. If this is missing, the student will carry out the proof mechanically,
and since the proof is then immediately followed by an application that is usually
computational in character, rather than visual, the proof learnt after the manipula-
tion of measurement will not contribute to the development of spatial imagination
(Ehrenfest-Afanassjewa 1931, section 5). So, Afanassjewa argues, if a student comes
to the truth of a theorem heuristically, the joy of learning that derives from the mental
effort of reaching the solution to a problem will be missing, and as a result the stu-
dent will not come to the systematic exposition of the relevant result with curiosity
and interest (Ehrenfest-Afanassjewa 1924, section 8.3-8.4; Ehrenfest-Afanassjewa
1931, pp. 8-9).

Another limitation of this approach is that it cannot be expected that students
will draw the correct generalisations from their experience in applying geometrical
theorems. Returning to the exercise just mentioned above, it is likely that the students’
measurements of the circumference with a tape will yield different results at different
times, and the teacher’s statement to the class of the right result at the end of the
exercise will not produce an understanding of the general theorem in the individual
student (Ehrenfest-Afanassjewa 1931, pp. 7-8). That is, sometimes measurement
does not even adequately contribute to the verification of the theorem in question by
the students. Furthermore, if students have only acquired familiarity with individual
theorems through practising their application, when attempting to solve a problem
they are likely torecall from their memory a specific formula that was useful in solving
a specific problem, as opposed to working through the problem themselves. As seen
above (Sect.2.5.1), this problem also arises in the context of the systematic approach,
and for the same reason, namely, the focus on teaching the content of particular
theorems rather than developing spatial intuition. A predictable consequence of this
phenomenon is that students lose the thread when they come to learn more complex
theorems, and that only a few disconnected theorems will be retained in their minds
after the end of their studies (Ehrenfest-Afanassjewa 1924, p. 9).

Empirical work such as measuring, drawing, sculpting, cutting, and pasting has
an important place in Afanassjewa’s plan for geometry education, but it must be
prompted by the development of spatial imagination rather than by the verification
of theorems, and accompanied by the logical analysis of spatial intuitions. In other
words, the aim of geometry education should not be teaching the correctness of given
geometrical theorems, but providing the students with the fundamental geometrical
concepts and the ability to mentally manipulate them. If prompted with the right exer-
cises, the subconscious mind retains impressions that are necessary to later recognise
the truth of geometric theorems.

For this reason, the development of the student’s own thinking process and imag-
inative skills should be prioritised over the reproduction of knowledge of individual
theorems. Students should first try to imagine the geometric figure under considera-
tion, and only afterwards the teacher should test and correct the students’ imagina-
tion to match the real objects (Ehrenfest-Afanassjewa 1924, p. 13; see also De Moor
1993). In this sense, the experimental method should only be used with the aim of
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getting the students to start to guess a certain regularity in the existence of spatial
relations, laying the ground for them to want to establish those more rigorously later
on.

2.5.3 The Propaedeutic Course and the Systematic Courses

To overcome the shortcomings of both the systematic and the experimental
approaches, Afanassjewa suggests that the students first take a propaedeutic or intro-
ductory course—the study of space—whose aim is to develop spatial imagination
(see chiefly Ehrenfest-Afanassjewa 1924, section 8.4). The course is designed to
provide the students with a repertoire of geometric images and the ability to men-
tally manipulate them, so that the fundamental geometrical concepts can develop
from concrete experience of the physical world, and the geometric terminology can
be connected to the mental representations of the geometric images. Hence, the
students should not prove any theorems at this stage, when they do not yet have the
appropriate instruments to deeply understand them, but should instead focus on doing
exercises with the goal of learning key geometrical concepts (Ehrenfest-Afanassjewa
1931, p. 5). In this context, students should not be taught terminology and diagrams
in a way that is disconnected from their familiar experiences. Geometry should be
presented as a discipline that operates with concepts that can be obtained by abstract-
ing from one’s sensory experience; terminology should be associated with the key
geometrical concepts that are developed from spatial intuition, and diagrams should
be used to generalise spatial relations observed in experience, rather than constitut-
ing a self-standing object of study for the students (Ehrenfest-Afanassjewa 1931,
pp- 9-10).

The intuitive content for the study of space is given by sensory experiences:
Afanassjewa stresses that regardless of the educator’s view on the aprioricity of spa-
tial representations, the students will find it easier to visualise in their mind those
spatial relations that are already familiar to them from experience than if they are
presented with Euclidean proofs from the beginning. A vivid interest in geometry
will arise in many students once they recognise how densely spatial problems pene-
trate everything we do or know (Ehrenfest-Afanassjewa 1931, p. 6). If students are
receptive to appreciating the possibility of fitting individual theorems into a simple
system whose axioms convey the fundamental truths about spatial relations, then
they will develop an interest in a more systematic approach to geometry by the time
they come to study geometry axiomatically. As seen in Sect.2.5, this can only be
obtained if students’ spatial imagination is already suitably trained in manipulating
geometrical objects mentally and they have suitable familiarity with the fundamen-
tal facts concerning spatial relations. Therefore, while visual support material is of
crucial importance at the beginning of the course, the teacher should not rush to
give the students visual support material as they progress in the course, but should
instead encourage them to use their own spatial imagination (Ehrenfest-Afanassjewa
1931, p. 12). Since the propaedeutic course constitutes a key step in the learning of
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geometry and the development of spatial imagination, time should not be saved at
this stage for the necessary mental manipulations: the laboratory exercises should
therefore last as long as needed, based on the level of development of the spatial
imagination of the class, and no longer than needed in order to prepare the students
for the systematic course.

Subsequently, the students should take a systematic course, whose main aim is to
develop logical thinking. This course differs from the traditional ones in that propo-
sitions that are evident to all students in the class should not be proved but assumed
temporarily as axioms. Other propositions will be formulated and proved under the
guidance of the teacher, but with a substantial input from the students (Ehrenfest-
Afanassjewa 1924, pp. 10-11). This course is designed to make the student come to
appreciate the value of rigorous proof, where such appreciation is unlikely to be trig-
gered by going through proofs of statements that the students already find obvious.
The aim of developing logical thinking is thus cultivated in the systematic course by
making the students formulate clearly their own perceptions and order them logically,
and it is facilitated by the intuitive presentation of the material that draws on what
the students learnt in the propaedeutic course. It is important that this course is kept
as concise as possible, in order to give as much space as possible to the development
of spatial imagination and logical skills.

Finally, students should take a revision course that recaps what has been learnt
in axiomatic geometry in the systematic course. At this stage, the obvious proposi-
tions that were not proved in the systematic course—the “temporary axioms”’—are
proved, and the logical dependencies among the propositions are analysed. The pur-
pose of rigorous proofs at this stage is not to establish the truth of general theorems,
whose truth is already recognised, but to establish the logical dependence of given
theorems on other theorems: the chief aim of logical thinking is to concentrate the
subject of investigation and connect the whole area using a small number of connec-
tions (Ehrenfest-Afanassjewa 1924, pp. 10—11). For this reason, determining which
theorems are axioms (i.e. which proposition is independent of the others but allows
the derivation of all the other theorems) should be left to the end of the geometry
course, and only offered to the most talented students who are curious about these
matters (Ehrenfest-Afanassjewa 1931, pp. 13—-15).

The goal of the teacher is thus to bring the student from the realisation that space
presents itself in a chaotic form, to familiarity with the fundamental spatial relations,
to the appreciation of rigorous proofs that allow to fit a number of theorems into a
straightforward and elegant system of axioms by showing the progress from chaos to
axiomatic system which comes with the systematic treatment of the subject. In order
for the teaching method to be maximally effective, it is necessary that the virtues
of the geometric method in solving problems and systematising spatial relations are
experienced personally by each student, and more importantly, that the mastery of
this method is seen as desirable by each student (Ehrenfest-Afanassjewa 1924, pp.
12-13, and Ehrenfest-Afanassjewa 1931, p. 4).

To this end, Afanassjewa’s manifesto includes 14 exercises, followed by 194 exer-
cises in the Ubungensammlung. The course outlined in the Ubungensammlung is not
structured linearly, but arranged in 19 subjects aimed at developing different concepts
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in the theory of space. The activities in both the Manifesto and the Ubungensamm-
lung are of different complexities, and their sequence is intended to be chosen by
the teacher in a way that matches the level of development of spatial imagination of
the students in the class. They include activities such as estimating distance, angle,
length, and proportion, visualising straight lines as axes of rotations or rays of light,
or flat shapes as arising from manipulations of three-dimensional objects,” imagining
endless lines that continue through walls and buildings, making schematic drawings
of simple mechanisms, determining what data is necessary in order to solve a given
geometrical problem, comparing the results of exercises carried out on planar and
spherical surfaces, respectively,® and many more. Other exercises involve notions
such as symmetry, shadow, perspective, as well as topological notions.

In the concluding section, I will briefly discuss how these ideas influenced geom-
etry education in the decades following the publication of the manifesto and the
Ubungensammlung.

2.6 The Reception of Afanassjewa’s Approach to Teaching
Geometry

Afanassjewa’s manifesto met with an immediate and somewhat hostile reaction from
the Dutch community of mathematics teachers and mathematicians interested in
education. Particularly notable was the reaction of mathematics teacher and historian
of mathematics E. J. Dijksterhuis. His response to the manifesto led to the founding of
a supplement to the mathematics journal Nieuw Tijdschrift voor Wiskunde, Bijvoegsel
van het Nieuw Tijdschrift voor Wiskunde, dedicated to mathematical education, and
later renamed Euclides. Dijksterhuis’s article (Dijksterhuis 1924a) was published
in the first issue of the Bijvoegsel, followed in the second issue by a reply from
Ehrenfest-Afanassjewa (1924b) and a further response from Dijksterhuis (1924b).
Dijksterhuis was a proponent of the systematic approach to geometry education
discussed in Sect.2.5.1. A major source of disagreement between him and Afanass-
jewa was thus the role of proof in geometry education: invoking Dedekind’s principle
that nothing capable of proof should be accepted without it, Dijksterhuis argued that
geometry should be taught axiomatically in the style of Euclid’s Elements. In so
arguing, he rejected Afanassjewa’s claims that while Euclidean axiomatics is the
best way of systematising the subject matter of geometry, understanding does not
proceed by surveying axiomatic proofs. By rejecting an essential role for intuition in
scientific thinking, Dijksterhuis sided with the tradition of which Dedekind was one

7A sample exercise of this kind is the following: “What form does a surface of water have in a
cylindrical glass held at different angles?” (Ehrenfest-Afanassjewa 1931, p. 32). Such an activity
is clearly aimed at developing projective imagination. Even though Afanassjewa does not discuss
it as explicitly as Klein, training this aspect of spatial imagination is nevertheless important in her
view.

8 Afanassjewa was fascinated by the discovery of non-Euclidean geometries, their respective axiom
systems and associated models, which she saw as a possible subject of study in high school.
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of the main exponents and which aimed to dispose of any appeal to geometric intu-
ition (see Sect.2.2). Dijksterhuis, however, was in fact advocating for a far stricter
approach in mathematical education than Dedekind himself, who observed that while
the use of geometrical intuition was not completely rigorous, it was “exceedingly
useful, from the didactic standpoint, and indeed indispensable, if one does not wish
to lose too much time” (Dedekind 1901, p. 1).

In the decade following the publication of her manifesto, Afanassjewa’s ideas
appear to have had little impact on the teaching of geometry in the Netherlands, which
remained stuck in the proof-based Euclidean paradigm advocated by Dijksterhuis and
the other “logicians”. By the mid-1930s, however, more voices in the Netherlands
were calling for reform, amongst whom were the members of the Wiskunde Werk-
groep (Mathematics Working Group), established in 1936 under the auspices of a
larger educational reform movement led by Kees Boeke.” The Wiskunde Werkgroep
met at Afanassjewa’s house in Leiden, effectively as a continuation of the seminars
she had held there in the 1920s, after she moved there from Saint Petersburg, and
until the Second World War. In 1947, the Werkgroep began to be attended by Hans
Freudenthal, who had moved to Amsterdam in 1930 as an assistant of L.E.J. Brouwer
and was then newly appointed to a chair in mathematics at Utrecht University in 1946.
Freudenthal, who would go on to become one of the leading figures in mathemati-
cal education in the Netherlands, was strongly in favour of an intuitive approach to
geometry, and praised Afanassjewa’s work on the teaching of geometry, especially
the exercises of the Ubungensammiung, which he called a masterpiece (van Hiele
1975; De Moor 1993; Smid 2016).

In the years after the war, Afanassjewa was still one of the leading figures in the
Werkgroep, and many of its meetings were still held in her home (La Bastide-van
Gemert 2015, p. 117). Through these meetings, perhaps even more than through her
publications, Afanassjewa brought to the Netherlands an international perspective
on mathematics education, at a time when mathematics education was not yet a
research field and the emerging debate was largely confined to national contexts.
Unlike the situation in mathematical research, where international collaboration and
dissemination was the norm, debates on different aspects of mathematical education
were by their nature tied to national issues of curriculum and the structure of the
school system in a given country, and moreover were conducted in the language of
the country in question (Furinghetti et al. 2013; Smid 2009, 2012; Nabonnand 2007).

Afanassjewa’s interaction with Freudenthal led to a joint production: the 1951
pamphlet Kan het wiskundeonderwijs tot de opvoeding van het denkvermogen bij-
dragen? (Can mathematics education contribute to the education of the intellectual
capacity?). The structure of the pamphlet was in some ways similar to that of Afanass-
jewa’s debate with Dijksterhuis in the Bijvoegsel: an initial article by Afanassjewa
was followed by Freudenthal’s response, and then by further responses from both
parties. Freudenthal took issue with the main point of agreement between Afanass-
jewa and Dijksterhuis, namely, that mathematics was an ideal subject to aid the

9For a brief history of the Wiskunde Werkgroep, see La Bastide-van Gemert (2015, pp. 30-32). See
also Smid (2009); Furinghetti et al. (2013).
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improvement of students’ intellectual capacity: in short, that learning geometry was
a good way to learn how to think (De Moor 1993, p. 19, La Bastide-van Gemert
2015, p. 139). As discussed earlier in this paper, Afanassjewa held that learning
mathematics was an ideal way in which to develop the intellectual capacity, or “good
thinking”. This included not merely the ability to make inferences on the basis of a
given set of premises, but a broader range of cognitive powers including

seeking the essentials in a given situation (power to abstract)[;] realizing this (which is not
the same); trying to formulate this sharply; confronting an obvious answer to a question with
the total range of data and never losing sight of the total situation (ability to criticize).'?

Elementary geometry was particularly suited to this educational role because of its
simplicity, and because our experience with physical space and spatial relations gives
us a way to approach the subject on an intuitive basis. Freudenthal, however, objected
that this very simplicity was in fact what made mathematics problematic as a subject
promoting the development of critical thought, since its “overly simple structure
protects it against the occurrence of inconsistencies” (Ehrenfest-Afanassjewa and
Freudenthal 1951, p. 25). Freudenthal further argued against Afanassjewa’s views
on more practical grounds, writing that

I do not deem it impossible that someone, practising a certain subject, also learns to think in
amore general sense [ . . .] I do not at all exclude the possibility that mathematics contributes
to practicing thinking. But I fear that one is building on quicksand when one wants to justify
the periods that some school subject requires by making an appeal to the thinking exercises
that those periods would be devoted to.'!

Nevertheless, in this exchange Freudenthal seems to a large extent to have been
talking past Afanassjewa, and addressing the question of whether mathematics should
be used to train students to think, rather than the question of whether it could (see
van Hiele 1975 and La Bastide-van Gemert 2015, p. 139).

Despite this disagreement, Freudenthal was deeply influenced by and sympathetic
to many of Afanassjewa’s views (Smid 2016). De Moor (1993) goes so far as to argue
that Afanassjewa was the driving force behind the development of Freudenthal’s
views on mathematical education, citing a number of substantial parallels in their
ideas: the emphasis placed on the individual learning of the student, the appeal
to spatial intuition as a basis for learning geometry, the connection with physical
reality, and the development of deductive reasoning. Ultimately, in large part due to
Freudenthal’s influence, Afanassjewa’s ideas entered into the primary and secondary
mathematics curriculum in the Netherlands. De Moor (1993, p. 22) reports that “more
than sixty years after the publication of the Ubungensammlung [in the curriculum
that came into force in 1992], there is now an intuitive introduction to geometry”.

10Ehrenfest-Afanassjewa and Freudenthal (1951, p. 6). The English translation of this passage is
drawn from La Bastide-van Gemert (2015, pp. 136-137).

1 Ehrenfest-Afanassjewa and Freudenthal (1951, p. 16). The English translation of this passage is
drawn from La Bastide-van Gemert (2015, p. 137).
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Chapter 3 ®)
Afanassjewa and the Foundations e
of Thermodynamics

Jos Uffink and Giovanni Valente

Abstract We review aspects of Afanassjewa’s work on the foundations of thermo-
dynamics from her 1925 paper on the Second Law and her 1956 book Grundlagen
der Thermodynamik. We argue that her work contained several valuable original
insights in these foundations, often much ahead of her times. In particular, we dis-
cuss how her 1956 book anticipated and showed the way to solve an alleged paradox
about reversible processes raised by Norton (2014, 2016) and discuss the remarkable
comments in her 1925 paper on the asymmetry between work and heat exchange —
which still awaits more common recognition—, and on the conceptual possibility of
negative absolute temperatures, long before Ramsey (1956) made this an accepted
physical possibility.

3.1 Introduction

Thermodynamics was borne out of the investigations of Sadi Carnot into the effi-
ciency of heat engines in 1824. It developed in the second half of the nineteenth cen-
tury as a mature and versatile physical theory through the work of Clausius, Kelvin,
Planck, Gibbs and many others. The approach taken by most authors in this period was
to develop this theory as a description of thermal properties of macroscopic physical
systems, while staying aloof from any speculation about their microphysical consti-
tution. In part, this methodology was favoured by the sceptical philosophical attitude
against the atomic hypothesis, championed by authors like Mach; for another and
probably more important part, it was favoured because proposals about the precise
nature of the atomic constitution of matter in that period were mostly speculative and
unsuccessful in explaining or predicting more than a handful of physical phenomena.
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Today, one often regards this approach of the founding fathers of thermodynamics
to avoid any assumption about the microphysical constitution of thermodynamic
systems as a typical case of ‘cold feet’, especially after Einstein’s work on Brownian
motion and Perrin’s (1913) Les Atomes. However, it did pay off handsomely by
yielding a theory that, while our conceptions of microphysics have gone through
revolutionary changes in the twentieth century with the advent of relativity and
quantum mechanics, remains applicable even in areas widely beyond the typical
cases studied in the nineteenth century (e.g. gases and liquids), like photon gases,
magnets and spin glasses, and even black holes.

Thus, Einstein wrote in his autobiographical notes:

A theory is the more impressive the greater the simplicity of its premises, the more different
kinds of things it relates, and the more extended its area of applicability. Therefore the deep
impression that classical thermodynamics made upon me. It is the only physical theory of
universal content which I am convinced will never be overthrown, within the framework of
applicability of its basic concepts. Einstein (1949)

Nevertheless, the formulation of thermodynamics that emerged in the Clausius-
Kelvin-Planck tradition remained close to working intuitions of engineers and exper-
imental physicists and does not meet the standards of rigour that would today be
expected from a physical theory that aspires to such universal scope. The first math-
ematician who endeavoured to provide a more rigourous basis for thermodynamics
was Carathéodory (1909). His work was mostly ignored by the contemporary physics
community until Born (1921) published a sympathetic review (and much simplified
version) of Carathéodory’s paper Born (1921). Born’s paper did attract a reaction
from Planck and other physicists like Landé, and Ruark. Planck’s assessment of
Carathéodory’s approach was, however, harsh: he called it an ‘artificial and unnec-
essary complication’ (Planck 1926).

Tatiana Afanassjewa (1925) also jumped into this discussion. Her response to
Carathéodory was considerably more positive, while pointing out several lacunae in
his treatment. What is more, she called for an even much more radical reformulation
of thermodynamics, conceptually separating the treatment of thermodynamic equi-
librium from that of irreversible processes. Indeed, she made clear in this paper that
her own goal differed from Carathéodory in that she aimed to pursue a logical sep-
aration between those aspects of thermodynamics that deal purely with equilibrium
states or the structure of the equilibrium state space of thermodynamical systems,
and those aspects that deal with processes that such systems undergo in the course of
time. Afanassjewa published several other articles on foundations of thermodynam-
ics in Russian in 1928 and 1930, and two papers in Dutch in Wis-en Natuurkundig
Tijdschrift (1936a, 1936b) (with a response by Verschaffelt (2019)).! She wrote a

IShe also submitted a manuscript in French to Actualités Scientifiques et Industrielles in 1941.
Unfortunately, it seems this latter manuscript was not received, presumably because of the war;
when she resent her manuscript to the same journal in 1946, it seems to have not received a timely
procedure, judging from what she wrote in her Ehrenfest-Afanassjewa (1948):
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substantial manuscript in the 1940s? finally published as Grundlagen der Thermo-
dynamik in 1956, when she was 80 years of age. But clearly much of the contents of
this work was written much earlier.

Even though Afanassjewa’s manuscripts are historically to be placed in relation to
the papers by Carathéodory and Born, many of the pertinent points she made along
the way remain truly worthwhile today, even when one disregards the historical
context of Carathéodory’s axiomatic approach (which has in fact been superseded
by more recent rigourous approaches to thermodynamics, in particular by Lieb and
Yngvason (1999)). The purpose of this paper is to point out and review these aspects
of her work and show their relevance to a very recent debate in the foundations of
thermodynamics on an alleged ‘paradox of reversible processes’.

Before dwelling upon these issues, we like to add a few remarks to emphasize the
extent of Afanassjewa’s influence. As reported by Van der Heijden elsewhere in this
volume, Paul Ehrenfest and Tatiana Afanassjewa influenced many young students
in Leiden that regularly met for informal discussions in their home, which she had
designed particularly for this purpose. The foremost influences of Afanassjewa’s
views on thermodynamics on this cohort of young academics are on Philipp Kohn-
stamm, and Berta Lorentz, (H.A. Lorentz’s oldest daughter). Kohnstamm had been
a student of J.D. Van der Waals, and co-authored their textbook Lehrbuch der Ther-
modynamik in 1908. A third edition of this book appeared in 1927. By this time, Van
der Waals had died and Kohnstamm took the revision upon himself. He explains in
the foreword to this edition that he changed the presentation considerably, and even
changed the title of the book, which now appeared as Lehrbuch der Thermostatik
(Van der Waals and Kohnstamm 1927), to underline the conceptual separation of
considerations of equilibrium states (statics) from those of processes. He notes in
this foreword ‘I am much endebted to T. Ehrenfest-Afanassjewa in reaching full clar-
ity on this point’ and frequently refers to oral or written discussions with her in many
sections of the book. Berta Lorentz (or De Haas-Lorentz, after her marriage to the
physicist Wander de Haas) wrote a Ph.D. thesis on Brownian motion, and co-authored
with Afanassjewa a paper on the Le Chatelier-Braun principle in thermodynamics.
Of particular relevance for our purpose is the textbook on thermodynamics she wrote
Over de beide hoofdwetten der thermodynamica en toepassingen in 1939, that, like
Kohnstamm’s, was written from Afanassjewa’s point of view.

These examples attest to Tatiana Afanassjewa’s influence on a generation of physi-
cists that contributed to the development of thermodynamics in the first part of the

In the year 1941, I sent my paper “Le second Principe de la Thermodynamique et
UIrreversibilité” to the editors of Actualités Scientifiques et Industrielles . ... At that time,
my mailing did not reach the editors. Now, the paper finally lies with the editors —for more
than a year.

Yet, this paper was never published.

2 A version of this manuscript (1948), as lecture notes for a course in the year 1947/48, is preserved
in Leiden. A letter from her daughter Tanya from January 1941, with detailed comments on the
manuscript, (which one of us (J.U) was allowed to read by Afanassjewa’s granddaughter Tamara
van Bommel) show that an even earlier version of this manuscript must have been written in 1940.
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20th century, who had the privilege of directly interacting or just corresponding with
her. Yet, as we explain in this paper, her legacy extends much beyond her contem-
poraries.

The organization of this paper is as follows. We begin in the next section by
placing her work within the mathematical tradition to axiomatize thermodynamics
starting with Carathéodory. In Sect.3.3 we discuss her (1956) distinction between
quasi-static processes and quasi-processes and explain how that helps one elude an
ostensive paradox that has engendered a recent debate in the philosophical litera-
ture. In Sects. 3.4 and 3.5 we focus on two remarkable topics of her (1925) paper.
In Sect. 3.4 we discuss her analysis of the question whether the differential equation
for heat and work should be treated on a par, or whether there is a crucial asymme-
try between them not captured in other approaches to thermodynamics. Finally, in
Sect.3.5 we focus on Afanassjewa’s analysis of the Second Law of thermodynam-
ics: remarkably, she was the first author to point out that the alleged equivalence
between Clausius’ statement and Kelvin’s statement really rests on the assumption
that absolute temperature always be positive, rather than negative. We argue that, by
contemplating the conceptual possibility of negative absolute temperatures, she was
30years ahead of her time.

3.2 The Axiomatic Approach to Thermodynamics: From
Carathéodory to Afanassjewa

Carathéodory (1909) made the first attempt to axiomatize thermodynamics as a math-
ematically rigourous theory. Carathéodory had before been working on areas which
we would now call topology, which was still at a fledgling stage at this time. His
main achievement, looking back with hindsight, is to formulate thermodynamics as
a theory about the state space I',, of all equilibrium states of a thermodynamical
system, and to assume this space forms a differential manifold. That is to say, the
space I',, is a mathematical construct which is itself ‘coordinate-free’; coordinates
are only introduced to chart the manifold, and the main condition to guide our choice
of coordinates is that they disambiguate the states (and some choices of coordinates
may fail this condition, even for a fluid as familiar as water, cf. Thomsen and Hartka
(1962)).

So, suppose we have a thermodynamics system in an equilibrium state, represented
as a point s € I'y,, and that there is suitable choice of coordinates for this space, in
which we can characterize this point by its coordinates as s = (xy, ... x,). There are
supposed to be (at least) two independent ways of interacting with a thermodynamic
system: by exchanging heat Q or by doing work W. Let us suppose (for the purpose
of this section, somewhat uncritically) that processes, in which the system exchanges
heat with or does work on its environment (or both), can be made to proceed so slowly
compared to relevant equilibration processes that during the interaction one can still
at all times (or up to a negligible error) characterize its state by a point in I',,. The
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change of state during such a process will then be represented by a smooth curve in
I".,. The nomenclature of such processes varies among authors: Planck called them
‘infinitely slow’ or ‘reversible’ processes, Carathéodory called them ‘quasi-static
changes of state’, Born called them ‘reversible processes’, and Afanassjewa (1925)
‘quasi-static processes’. We will employ this last name here.

If we focus on an infinitesimal section of such a curve, the effect of the interaction
on the state of the system may be given by some differential equation, like

d0 =) Xdx; (3.1)
i=1
for heat exchange; and for an exchange of work by a similar expression:
dW =) Yidx; (3.2)
i=1

where the X; and Y; are assumed to be smooth functions on I',,, which will depend on
the kind of system. For example, if the system is one mole of an ideal gas, whose state
space is two dimensional, and if we choose the coordinates as (7, V) (its absolute
temperature and volume), the expression (3.1) becomes

d Q = scydT + pdV. (3.3)

where cy denotes its specific heat at constant volume, an p = RT/V its pressure.
Similarly, the work done by the system in this case will be expressed as

dW = pdV. (3.4)

But for other systems or indeed for different choices of coordinates the functions X;
in (3.1) or Y; in (3.2) will need to be adapted accordingly.

Of special interest are the so-called adiabatic quasi-static processes, in which
there is no heat exchange with the system, and therefore, Eq. (3.1) becomes

d0 =) Xdx; =0. (3.5)

i=1

A central question is then whether or not there exists a quantity (which will
eventually get the name of ‘entropy’ §) such that adiabatic quasi-static processes
have the property that S remains constant in any such process. In other words, the
question is whether there exists a function § on I, such that the curves that represent
adiabatic quasi-static processes will always lie in a hypersurface characterized by
the equation

S(x1,...,x,) = const. (3.6)
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This is not a trivial question, especially not when the dimension of I',, is higher
than two.

Another notable achievement of Carathéodory is that he drew a connection
between this question and the work by Pfaff from the 19" century, that showed
that a partial differential equation like (3.5) could belong to exactly three different
classes:

(i) It might be that there exists some function Q on I',,, such that
a
99 _ Xifori=1,....n. (3.7)
8)(,'

In that case, Eq. (3.5) is simple: it boils down to d Q = 0, and curves that obey
it will indeed belong to the hypersurface Q = const. In this case, Eq.(3.5) is
called integrable, and d Q is said to be an exact differential.

(i1) It might also be that there does not exist such a function Q as imagined in
case (i). In this case, d Q is not integrable, and called an inexact differential
(which motivates the notational distinction d Q instead of d Q). However, a
weaker condition will nevertheless yield similar implications as in case (i). This

condition is the assumption that there are two functions on I',,, say T and S,
where T # 0 everywhere, such that
aS
Xi=T—fori=1,...,n (3.8)
8x,~
Under this condition Eq. (3.5) is equivalent to
TdS =0, (3.9)

whichin view of the assumption that 7" is non-vanishing, is equivalenttod S = 0,
by which we recover the same implications as in case (i), this time for the
hypersurface S = const. If this condition holds, it is said that there exists an
‘integrating divisor’ for Eq. (3.5), since a division of the equation on both sides
by T makes it integrable.

(iii) Itmightalso be thatboth cases just considered fail to hold. Indeed, it could be that
a smooth curve, starting out at any given initial point s;, € I',,, always obeying
Eq.(3.5), we can reach any other desired point in I',,. In such a case, Eq. (3.5)
simply doesn’t constrain a curve obeying this equation to any hypersurface at
all.

Now, it is well-known that the adiabatic quasi-static processes in thermodynamics
do not belong to class (i), even for a case as simple as the ideal gas. The physical
interpretation of this fact is that heat Q is not a quantity, i.e. one cannot characterize
systems by the ‘amount of heat’ they contain, as was supposed by many 18th and
early 19th century authors. On the other hand, if the adiabatic quasi-static processes
in thermodynamics would belong to class (iii), it would make most of that theory
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utterly inapplicable. It is therefore important that all such processes belong to class
(ii), i.e. that one can guarantee the mathematical existence of an integrating divisor,
namely, the temperature 7', such that division of the inexact differential 4 Q by T
turns it into the exact differential dS =d Q/T.

Carathéodory also proposed a particular proposition (Carathéodory’s Principle)
that he claimed to imply that adiabatic quasi-static processes belong to class (ii), and
would therefore guarantee the existence of entropy for a thermodynamical system,
and in his view express the Second Law of thermodynamics.?

Afanassjewa, being trained as a mathematician herself, applauded Carathéodory’s
work in her (1925, p. 933) as ‘a particularly valuable attempt to axiomatize the Second
Law of thermodynamics’. However, she set herself the task of elaborating a more
complete and conceptually quite distinct axiomatic formulation of the theory, while
building upon Carathéodory’s results. As she put it in the opening lines of her 1925

paper:

[TThe approach here is different from Carathéodory’s, most of all concerning the role of
irreversible processes. The aim here is to obtain a deeper understanding of the Second Law
by concentrating exclusively on reversible processes. (p. 933.)

Indeed, her paper presents two sets of logically independent axioms, the first set
aiming to describe the properties of thermal systems in equilibrium and the second
set aiming to characterize the notion of irreversibility in contrast with the properties
of reversible or quasi-static processes, conceived of as curves in equilibrium space.
This approach culminated in her 1956 book, where she put forwards a more careful
characterization of the concept of thermodynamical processes, which eliminates the
use of the misleading adjective ‘reversible’. In the next section, we discuss this issue
in greater detail.

3.3 Reversible Processes Versus Quasi-Processes

As we have seen, a discussion of ‘reversible processes’ (or ‘quasi-static processes
‘infinitely slow processes’, etc.) is central to thermodynamics. In the traditional
understanding, such processes are represented by curves in the equilibrium state
space of a given thermodynamic system. In Afanassjewa’s 1925 paper, she endorsed
this view, following Carathéodory. However, in her 1956 book, she developed a
more subtle viewpoint, in which such curves are not taken to be representative of
processes at all but seen merely as ‘quasi-processes’. In this section, we aim to explain
her reasons for introducing this new terminology and show why it matters.
Representing reversible processes as curves in equilibrium space has the imme-
diate advantage that it allows application of the tools of calculus to characterize such
curves locally by means of partial differential equations. In particular, one can write

3More details on the formulation of Caratheodory’s Principle, and on the question whether his claim
holds, see (Uffink 2001).
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the differential form of the First Law as d Q = dU + d W, where d Q represents
an infinitesimal quantity of heat added to the system in a reversible process, dU the
change in internal energy and d W the work done by the system against its envi-
ronment. Afanassjewa’s Axiom A then asserts that, if the integral || 12 d Q is non-zero
along some curve connecting two equilibrium states 1 and 2, there is no adiabatic
curve between these two states. This entails Carathéodory’s principle, from which
one can in turn prove the existence of an entropy function S such thatd Q = TdS,
by means of the Pfaff theorem described above. Yet, Afanassjewa went on to observe
that, contrary to what Carathédory claimed, this fact is not sufficient to establish the
Second Law, for which she introduced further axioms that we will address in later
sections below.

What we want to address first is that the conception of reversible processes as
curves in equilibrium space raises the threat of a paradox that has been explicitly
formulated recently by Norton (2014, 2016). Roughly speaking, the paradox arises
because a system in a thermodynamic equilibrium state does not change its state in
the course of time as long as it remains isolated. To make a system undergo a process,
i.e. to change its state, we need to disturb it from outside, either by, e.g. removing a
partition, by exchanging heat or work with it, etc. But when the system is disturbed, it
will no longer be in equilibrium, and its state cannot be described in the equilibrium
state space. This raises the question of whether curves in the equilibrium state space
of a system can be understood as processes at all. Norton formulates this paradox
as a contradiction between two claims about reversible processes (using a view in
which this disturbance is characterized as ‘an imbalance of driving forces’):

1. They are processes with a non-equilibrium imbalance of driving forces, such as non-
zero temperature differences or unbalanced mechanical forces; for this imbalance is
needed to move the system from one state to another.

2. At the same time they are sets of equilibrium states in which, by definition, there is
no imbalance of forces; for then the forwards and the reverse processes pass through
the same set of equilibrium states and both can be represented by the same curve in
equilibrium state space. [Norton (2016), p. 43]

Norton submitted that this paradox is at the bottom of a mistake that he claimed to be
common to virtually all authors in thermodynamics, including Afanassjewa herself.
In his view, the alleged mistake rests on the interpretation of reversible processes as
proper idealizations, namely, as consistently defined infinitely long processes, and it
can be avoided if one uses curves of equilibrium states simply as yielding convenient
approximations of the properties of extremely slow real thermodynamical processes.
Nevertheless, Valente (?) objected that such a characterization was already implicitin
Afanassjewa’s work and showed that one can disarm Norton’s paradox of reversible
processes by resorting to her notion of quasi-processes. Here we elaborate on her
proposal.

Indeed, the most natural step to prevent Norton’s paradox from arising is to rec-
ognize that curves in equilibrium state space are not to be understood literally as
descriptions of processes (i.e. as changes of state of a system occurring in the course
of time) at all. It is this recognition that led Afanassjewa, in her 1956 book, to take
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the crucial step of denoting such curves as ‘quasi-processes’, rejecting all earlier
terminology, whether it was the traditional term ‘reversible process’, Carathéodory’s
‘quasi-static change of state” or Planck’s ‘infinitely slow process’.

In the opening chapter of her 1956 book Afanassjewa noted that if a system is
initially in equilibrium, any process requires an external disturbance, by which the
system attains a non-equilibrium state (Sect. 3.5). In that section, she discussed the
simplest example of such a process in which the disturbance is just a one-time exter-
nal intervention: the removal of a partition or loosening of an internal piston; or
the establishment of a new coupling between previously separated systems (say: a
thermal coupling between bodies at different temperatures, or a mechanical cou-
pling between bodies at different pressure, etc.). She called those processes, where
a single external intervention introduces a non-equilibrium condition, and the sys-
tem is afterwards left to evolve in isolation spontaneous processes. In the following
section (Sect. 3.6) she discussed the state-space representation of such processes, by
means of an extremely high-dimensional manifold (which we call I',.,) containing
the non-equilibrium states of the system, in which the space of equilibrium states
I'., is imbedded as a very low-dimensional subspace (Diagonalraum).

A process in a thermodynamical system, even if it starts in an equilibrium state in
I"¢y, will thus generally be represented by curve in I'., thatimmediately takes it out of
this equilibrium subspace. Under certain conditions, one may assume that the system
will eventually evolve towards a new equilibrium state.* In Sect.8, spontaneous
processes are contrasted with what Afanassjewa called ‘forced changes of states’,
wherein disturbances from equilibrium are not caused by the removal or introduction
of couplings inside a system, which modify its internal structure, but rather by a
coupling of intensive parameters of the system with a changing environment. In
particular, she focussed on a special class of those forced changes of states during
which (i) one or more of the intensive equilibrium parameters (i.e. temperature or
pressure, etc) of the system and of its environment differ only slightly so that (ii) the
system and its environment remain close to obeying the conditions of equilibrium;
(iii) the difference between the final and initial values of the parameter for the system
is also very small. As a result, the average velocity of equilibration of the parameters
will also be very small. She calls such a change of state an elementary quasi-static
process. Its state-space representation is by a curve in I',,, whose initial and final
states are in the subspace I',,, while all its other points are outside but near to this
subspace.

She then defines a complete quasi-static process as a succession of a large number
of such elementary quasi-static processes.’ Implicit in this conception is that we also
apply a limiting procedure, in which the parameter difference between system and
environment tends to zero in each elementary quasi-static process, while the number

4She discusses a counterexample for these ‘certain conditions’ by means of a gas expanding into
an infinite volume. In (Brown and Uffink 2001), this claim that an isolated thermodynamic system
eventually reaches equilibrium is codified as the ‘Minus First Law’, under the condition that the
system is contained in a fixed finite volume.

SNote that for Afanassjewa, quasi-static processes are always forced processes; a sequence of
spontaneous processes, even if they are made to proceed very slowly, is not.



64 J. Uffink and G. Valente

mem

wT2

7 Ty +6 Ty—6 T,
(a)
N Y )
T T
T T, +6 Ty — 6 15
(b)

Fig. 3.1 a An illustration of how Afanassjewa conceived of a quasi-static process for raising the
temperature of a system from 77 to 7> (where 7> = 71 + N§). As a starting point, the system
is in thermal equilibrium with a heat reservoir at an in initial temperature 77. Then, we move
the system to another heat reservoir at a slightly higher temperature 77 4 §, and let it equilibrate
with this reservoir. During this process of equilibration, the system will not by in equilibrium
at all, but after some period, it will reach a new equilibrium at the temperature 77 + 8. (This
completes an ‘elementary quasi-static process’.) Repeat this step by now placing the system in a
heat reservoir at temperature 77 + 28, etc., until after N steps the system finally reaches equilibrium
at 7». Afanassjewa’s conceived of a quasi-static process as a limiting procedure of such a sequence,
in which the temperature steps § tends to zero, while the number N of elementary steps to reach
temperature 7> grows to infinity. b A similar quasi-static process for lowering the temperature from
T, to Tj. Starting from the right-hand side of the figure, where the system is in thermal equilibrium
with the reservoir at temperature 75, one constructs a sequence of elementary quasi-static processes
by successively placing the system in heat baths that are each at a temperature 6 lower than that
of the preceding bath. The resulting quasi-static process is therefore not the exact reversal of the
process in Fig.3.1a

of such elementary processes goes to infinity. These ideas are illustrated in Fig.3.1a.
In a state-space representation, a quasi-static process thus corresponds to a discrete
sequence of equilibrium points, joined by intermediate curves of non-equilibrium
states (cfr. Fig.3.2). Thus, Norton’s paradox does not arise for such processes: in
agreement with Statement 1 the system moves from state to state by non-equilibrium
processes. However, since it is not represented by a continuous curve in equilibrium
state space, Statement 2 is false.

For the purpose of characterizing equilibrium curves, Afanassjewa (1956) intro-
duced the term quasi-processes, in order to distinguish it from the notion of quasi-
static processes. The intended definition and the role of quasi-processes in thermo-
dynamics are explained in the subsequent Sect. 9:
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Fig.3.2 A representation of the quasi-static processes of Fig. 3.1 in state space. Here, the blue curve
represents the equilibrium subspace I',; with two designated equilibrium states s1 and s;. The non-
equilibrium processes in the upper half of the figure illustrate how one can change the state of the
system from s to s2 by a sequence of processes in which the process is divided into smaller and
smaller elementary quasi-static processes, a procedure by which they converge upon a continuous
curve (quasi-process) within I, . The processes in the lower half illustrate the same for going from
52 to 51, showing that while none of the processes in the lower half are an exact reversal of processes
in the upper half, they may converge onto the same quasi-process in I'¢, . Indeed, while each of the
approximating processes in either the upper half or lower half are generally irreversible, the limit
to which they both converge is a quasi-process, for which the distinction ‘reversible/irreversible’
no longer makes sense

[Clontinuous sequences of equilibrium states that join two given states of equilibrium ...are
represented graphically by curves in [I"¢, ]. They have traditionally been called “processes”,
and in particular “reversible” processes. We will rather call them “quasi-processes,” as —
clearly — they cannot be actualized by any real process; further, we explicitly want to leave
out the epithet “reversible”. (p. 13)

Since quasi-processes are not processes, there is, therefore, nothing in them that could be
reversed — except, perhaps, that one might say one could follow them mentally in both direc-
tions. But that is also not forbidden for any other series of non-equilibrium states a system
goes through in a real process. If, on the other hand, one wants to consider the approximat-
ing quasi-static process, rather than the quasi-process itself, then those are irreversible in
the same sense as any other real process. Accordingly, a quasi-static process by which one
would want to approximate a quasi-process is not exactly the inverse of that by which one
approximates the reverse quasi-process: if, for example, the direct quasi-process requires
a continual flow of heat into the given system, then the systems in the environment which
are used for this purpose must always have a higher temperature than the system during
the direct course, while they should always be at a lower temperature during the reversed
course.” (pp. 15-16)

The last remarks in this quote are illustrated in Fig. 3.1b, which displays a reversal
of the quasi-static process of Fig.3.1a.

To appreciate the importance of Afanassjewa’s proposal two remarks are in order.
First of all, she clearly indicated that continuous curves in equilibrium space can-
not themselves be interpreted as thermodynamical processes, and that is why she
proposed that they should be better called quasi-processes. In fact, they are mere
mathematical constructs that enable the application of partial differential equations
to thermodynamics. As a consequence, quasi-processes naturally satisfy the prop-
erty of being represented by curves in equilibrium space in Statement 2 of Norton’s
paradox, but they do not obey Statement 1, thereby again avoiding contradiction.
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The connection between quasi-processes with real thermodynamical processes is
instead enforced by the notion of a quasi-static limit. As we have seen, quasi-static
processes are described as discrete sequences of equilibrium states, joined by non-
equilibrium curves. In the quasi-static limit, where the number of elementary quasi-
static processes grows, this discrete sequence becomes dense, and the intermediate
non-equilibrium curves get shorter and closer to equilibrium space. One may argue
that they will converge to a continuous curve in equilibrium state space. If so, and if a
process that is sufficiently close to a quasi-process at each stage of its evolution, such
a process may be regarded as practically indistinguishable from a quasi-process.°

The second remark concerns reversibility. As explicitly asserted in the above
quote, Afanassjewa’s nomenclature aims to eliminate the adjective ‘reversible’ from
the characterization of equilibrium curves. In her view, a thermodynamical process is
reversible justin case its inverse process, during which the system retraces all the steps
in the reversed order, can also occur in nature. However, since quasi-processes are
not actual thermodynamical processes, they cannot possibly be reversible. The fact
that continuous curves in equilibrium state space may be equivalently parametrized
in two directions (with either an increasing or decreasing parameter) does not have
anything to do with the temporal direction in which thermodynamical phenomena
occur. The underlying intuition was already present in her 1925 paper when she
commented on the Second Law:

Whether a particular state can be reached adiabatically quasi-statically from a given one only

depends on the coefficients of the Pfaff equation, and nothing else. So we conclude, in the

first place, that for the existence of entropy it is irrelevant whether the quasi-static processes
themselves are reversible or not (p. 942).

In other words, the existence of an integrating divisor for heat, which ensures the
existence of entropy, has nothing to do with the direction of time at all. In the 1956
book she further developed this view by emphasizing that, even if a quasi-static pro-
cess approximates a continuous curve oriented in one direction, the quasi-process
approximating the curve in the opposite orientation would not be the inverse pro-
cess of the original one, as illustrated in Fig. 3.2. Later, in the 1959 Preface to the
English translation of the famous encyclopedia article on the foundations of statistical
mechanics she co-authored with Paul Ehrenfest, Afanassjewa reinforced this convic-
tion by warning that the existence of an integrating divisor is completely independent
of the direction in time in which to thermodynamical processes develop.

For completeness, let us mention that Norton (2016) casted doubts upon Afanassjewa’s notion of
‘closeness to equilibrium’. (See Valente (?) for a reply.) Clearly, to make such a notion precise one
needs to equip ', with an appropriately chosen topology (or, stronger, with a metric or distance)
by which one can qualitatively or quantitatively express ‘closeness to equilibrium’, and to show
that this choice is relevant to physical practice in the sense that if this ‘distance from equilibrium’
is small enough, the state is observationally indistinguishable from equilibrium. This is, indeed, a
formidable technical task since 'y, is generally a space of extremely high dimension, and states
can deviate from equilibrium in a myriads of different ways. Admittedly, Afanassjewa did not
address this formidable task, except by qualitative and intuitive remarks. Neither, we may add,
has Norton. Indeed, his notion of an ‘imbalance in driving forces’, which refers (at least partly)
to the environment rather than the system itself, does not readily translate into a topology on the
non-equilibrium state space of the system.
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To sum up this section, we conclude that Afanassjewa in 1956 already successfully
showed how to resolve a paradox that Norton raised about the traditional understand-
ing of reversible processes in (2014, 2016). There seems to be a slight difference in
emphasis in their approaches, though: while Norton is worried about the sense in
which ‘reversible processes’ are processes; Afanassjewa was perhaps more worried
about the sense in which they are ‘reversible’.

3.4 The Distinction Between Heat and Work

As we saw in the previous section, Afanassjewa distinguished between spontaneous
processes and forced changes of state, depending on whether a thermal system
remains isolated after an external intervention, or whether it remains coupled with its
environment, respectively. It is only in the latter case that one can define quasi-static
processes. Any approach to thermodynamics, rich enough to express the Second
Law, must also account for (at least) two ways in which the system can interact with
the external environment: either by an exchange of work (positive or negative), or
by exchanging heat. While Carathéodory assumed that there is a distinction between
these two types of interaction, he did not comment on what this distinction was, pre-
sumably because it is hard to capture mathematically. The unfortunate result is that
his formalism is actually symmetrical under the interchange of the meaning of ‘heat’
and ‘work’ (mutatis mutandi). However, in her 1925 paper, Afanassjewa identified
an asymmetry to distinguish between these two types of interactions and included it
in one of her axioms.

There is a prima facie analogy between the treatment of heat Q and work W in
thermodynamics. In a quasi-static change of state’ in which the system exchanges
heat with its environment, the heat absorbed by the system is given by the equation:

dQ =Tds, (3.10)

whereas the equation for the work done by the system, likewise in a quasi-static
change of state, reads
dW = pdV (3.1D)

This pair of equations thus suggests a symmetry in the theory: if one were to replace
‘heat absorbed’ by ‘work done’, temperature 7 by pressure p, and entropy S by
volume V, the two equations transform into each other. In both cases, the inexact
differential of a given quantity that is not a function on I',, (heat Q or work W) is
related, by means of an integrating divisor (temperature 7" or pressure p) to the exact
differential of some other quantity (entropy S, or volume V resp.) that is a function

"Here, we stick to the phrase ‘quasi-static change of state’ employed by Ehrenfest-Afanassjewa
(1925), although, from the perspective of her Ehrenfest-Afanassjewa (1956), the term ‘quasi-
process’ would be more appropriate.
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of state. This establishes a formal symmetry between relations (3.10) and (3.11).
With an eye towards the Second Law, one may note that just like there is no way to
decrease the entropy of a system unless it exchanges heat to its environment, it is
also true that one cannot decrease the volume of a body of gas without doing work
on it.

So, thermodynamics appears symmetrical with respect to the differential
Egs.(3.10) and (3.11), both in terms of their formal structure and in terms of how
they apply to the relevant processes of heat exchange and gas expansion. Neverthe-
less, the analogy breaks down as one takes the Second Law into consideration. For,
the standard textbooks on thermodynamics teach us how, starting from Eq. (3.10),
we can arrive at the conclusion that for any adiabatic process (i.e. any process in
which there is no heat exchange), whether quasi-static or not, we obtain the result
that entropy can never decrease. The Second Law is thus presented in the form:

The entropy S of a system is non-decreasing in any adiabatic process.

There is also a presumption that entropy is singled out as the measure of irreversibility.
By contrast, standard textbooks on thermodynamics never present an analogue of
the Second Law for the performance of work, which would be a statement of the
following form:

The volume V of a system is non-decreasing in any process in which no work is exchanged
with the system.

The usual textbooks on thermodynamics typically discuss only two ways in which the
volume of a gas can change: either by moving a piston against an external pressure,
which always involves a non-zero exchange of work, d W; or by removing a partition
and allowing the gas to expand in a vacuum to attain a larger volume, and equilibrate,
this time without work, W = 0.3 Yet, they contain no examples of processes in which
the volume of a system could shrink without the performance of work. One might
thus be led to expect that such processes are forbidden in thermodynamics.

To be sure, there actually are systems that can display states with negative pressure,
such as elastic bands, certain fluids in metastable states, and more exotic examples in
cosmological applications. Those systems will, indeed, spontaneously contract when
their volume is allowed to change. But these are not amongst the staple example of
elementary textbooks. So one might well ask what distinction between work and heat
exchange implies an asymmetry between them.

Afanassjewa (1925) was, to our knowledge, the first author in the foundations of
thermodynamics to point out that there actually is a conceptual distinction between
processes involving heat exchange and the exchange of work, providing an explicit
example for this purpose. Also, she captured the distinction between heat and work
within her (1925) axiomatization of thermodynamics by means of an independent
axiom, i.e. Axiom B or Coupling axiom. Let us discuss these two points in order.

In her 1925 paper Afanassjewa considered a system enclosed in a container with
two movable pistons with the same area A (p. 936). The system is in mechanical

8Note, that according to Afanassjewa’s account, the first process is an example of forced change of
state, whereas the second is a spontaneous process, and therefore not quasi-static.
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Fig. 3.3 Two vessels, each containing a body of gas are coupled mechanically, in this picture by
means of equal-armed levers, initially assumed to be locked. By unlocking either the top or the
lower lever, one can arrange that work will be done on system 1 by system 2, or alternatively, on
system 2 by system 1, depending on their pressures and the areas of the enclosing pistons. This
example shows that a thermodynamic system at low pressure can very well do work on another
system with higher pressure (In contrast, a system with low temperature cannot transmit heat to
system with high temperature

contact with a reservoir, considered as its environment, made of a gas enclosed in a
container with two movable pistons of different areas A; and A,, where the first is
smaller than A and the second is larger (See Fig.3.3). Suppose that initially all the
pistons are locked in position (e.g. by pins through the walls), the pressure of the
gas system is p and the pressure of the reservoir pg is somewhere between pAA2 and

p AA]. If we now unlock the upper coupling in Fig. 3.3, the system will do work on the
reservoir, because the force that the system exerts on the lever is greater than the force
by the reservoir on this lever. But if instead we release the lower lever, the reservoir
will do work on the system. (In both cases, these will not be quasi-static processes, of
course.) The point, here, is that the direction of work exchange is not determined by
the values of the pressure p of the system and py of the reservoir. Since we assumed
P <pr<piand £ <1< 4, pg may be greater or smaller than p. Hence,
this example shows that a system can very well perform work on another system with
a higher pressure. The direction of the exchange of work depends on the particular
mechanical contraption used to couple systems. (Of course, this should not come as
a surprise, since many hydraulic devices exploit this feature.)

However, the point just made stands in marked contrast to the direction of heat
exchange and its relation to the temperatures of the systems involved. Indeed, one of
the classic formulations of the Second Law by Clausius (see Sect. 3.5 below) claims
that the direction of heat exchange is a/lways from a body at a higher temperature to
a body a lower temperature. But if we replace ‘heat’ with ‘work” and ‘ temperature’
with ‘pressure’, the analogous statement is not true, as we have seen. According to
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Afanassjewa, this marks a decisive distinction between the exchange of heat and
work, or between thermal and mechanical coupling. Even though heat exchange can
be effected by many different physical mechanisms (e.g. by radiation, conduction or
convection), the question whether the system absorbs or emits heat from its environ-
ment depends only on their respective temperatures. She codified this point into the
following independent axiom:

Axiom B. (Coupling Axiom) Only one kind of thermal coupling is possible.

De Haas-Lorentz (1938) phrased this axiom in the following words:

There are no thermal levers.

Of course, both formulations of the coupling axiom may not have been the clearest
use of words. We take it that these words are meant to express something like the
following’:

The direction of heat exchange in a thermal coupling between two bodies initially in equi-
librium depends only on the temperatures of these bodies.

So, Afanassjewa 1925 recognized that there is an explicit asymmetry between
heat exchange and work exchange. She convincingly argued, in the example she
gave, that in contrast to the above, the direction in which work is exchanged by a
mechanical coupling between two systems in equilibrium is not determined by their
pressures but depends also on the kind of coupling: it is very well possible for a
system with low pressure to do work on a system with a higher pressure.

For Afanassjewa, the Coupling axiom is motivated by the fact that its failure would
lead to a violation the Second Law. Indeed, she presented it as a necessary condition
for the derivation of the law in the sense that, if it did not hold, there would exist
some closed curve in equilibrium space along which ¢ TdS # 0 while extracting
heat only from a single reservoir at constant temperature and convert it into work.
In addition, she argued that, in combination with the previously discussed Axiom A
and an additional Uniqueness Axiom C, which states that ¢ S = 0 along any closed
path in I',,.!° Axiom B is sufficient in order to prove the important statement that
more than one reservoir be needed if one wants to obtain work from heat during a
thermodynamical cycle. Afanassjewa’s sharp analysis on this point certainly helps
to shed light onto the structure of the theory.

9We admit here that we are taking liberties with respect to Afanassjewa’s writing. Her own paper
expression the intention of the axiom as: “What is meant, here, is that when two systems are coupled
in such a way that they exchange heat, while maintaining equilibrium, this is only possible when they
have the same temperature (rather than any other function of state)’ (p. 935-936). This statement
is indeed a consequence of our formulation, if we interpret the condition that the systems maintain
equilibrium during the heat exchange the execution of a limit in which the heat exchange becomes
quasi-static. The fact that she only mentioned this consequence for quasi-static processes of heat
exchange might be due to her wish to strictly separate considerations of equilibrium from those of
irreversibility.

10The need for Axiom C is somewhat unclear to the present authors, as it seems to us that 55 dF =0
along a closed path for any continous function F on I',,.
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3.5 Afanassjewa on Negative Absolute Temperatures

There now remains one last step in Afanassjewa’s axiomatic formulation of the
Second Law of thermodynamics. Axioms A, B and C entail the existence of an
entropy function S suchthatd Q = T'dS. Butone also needs to show that this function
obeys the Second Law, that is the statement that entropy S is non-decreasing during
any adiabatic process, not just quasi-static ones. A full axiomatization of the Second
Law thus ought to include further axioms from which one can derive both Clausius’
and Kelvin’s statements of the Second Law. The former statement is

CLAUSIUS: 1t is impossible in a cyclic process to transfer heat from a cold to a hotter
reservoir, without any further changes taking place.

whereas the latter statement is

KELVIN: It is impossible in a cyclic process to produce work by extracting heat from a single
TeServoir.

At first sight, the two statements are not quite similar. Clausius’ statement concerns
an asymmetry in heat exchange, in that heat transfers always proceed from hot to
cold, i.e. it relates this asymmetry to the ordering of temperatures. Instead, Kelvin’s
statement makes explicit the idea that in order to produce work in a cycle one needs
to exchange heat with at least two reservoirs at different temperatures. However,
textbooks on thermodynamics standardly contain arguments that allegedly prove that
the two statements of the Second Law are in fact logically equivalent. Afanassjewa
(1925) was actually the first to recognize that this alleged equivalence presupposes
that the absolute temperature 7 is assumed to be positive, and she added an Axiom
D, or Temperature axiom, in order to capture this presupposition. That leads one
to another question, though: that is, what happens when the absolute temperature
becomes negative? We address this issue here in the final section.

The question of the emergence of the very concept of temperature (as distinct from
the notion of heat), and the question of what would be an appropriate scale to express
the concept numerically has an involved history, which goes back long before the
rise of the theory of thermodynamics in the nineteenth century (see Chang 2004).
The notion that one could, or indeed needs to distinguish between characterizing
heat by an amount but also by an intensity, today called temperature, developed
in the fifteenth and sixteenth century when the first thermometers were invented.
But even when that idea took hold, the thermometers in actual use hardly led to
a single universal scale because they relied on different thermometric substances
(like mercury, alcohol, water, etc.), each of which had different properties in how
they changed volume with temperature, and having different freezing and boiling
points. Kelvin famously cut across all such considerations by proposing a scale for
temperature that he called ‘absolute’, because it did not depend on the choice of any
particular thermometric substance. In stead, he proposed to measure temperature by
a scale that gave Carnot’s theorem its most simple analytical expression. But even
Kelvin did not suppose that ‘absolute zero’ was a barrier that could not be crossed.
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This idea that absolute temperature has a lower bound of zero did become more
persuasive, however, due to the concurrent rise in the 19th century of the kinetic
theory, a microscopic theory with the purpose of underpinning thermodynamics, in
which heat was seen as a ‘kind of motion’ and temperature was interpreted as the
mean kinetic energy of the micro-constituents of a body. And since kinetic energy is
by its very definition non-negative, the general consensus view emerged that absolute
temperatures must be non-negative too in order to be physically meaningful. How-
ever, kinetic theory is only one special application of thermodynamics, and, as we
will see below, there are other applications of thermodynamics where temperature
is not correlated with mean kinetic energy. What is more, if we hold on to the view
that thermodynamics is a macroscopic theory in its own right, not to be identified
with what remains after the alleged reduction to kinetic theory has taken place, the
question whether negative absolute temperatures are to be excluded as a matter of
principle is not so obvious at all. Let us see how Afanassjewa’s 1925 formulation of
the Second Law of thermodynamics anticipated these outstanding issues.

She considered a Carnot process as a simple example of a cyclic process. (Recall
that a Carnot cycle is composed of four quasi-static transformations: an isothermal
one in which a quantity of heat Q; is absorbed from reservoir 1 at constant tem-
perature 7} and another in which heat Q5 is emitted to a reservoir at lower constant
temperature 75, plus two intermediate transformations during which the gas is com-
pressed and expanded adiabatically, thus without any exchange of heat.)

She first presented an argument, in footnotes 10 and 11 of her (1925), claiming
that, if the temperature of the cold reservoir is set to zero, (i.e. T, = 0), this would
provide a case in which Kelvin’s formulation is violated, while Clausius’ is not.
This would then provide a first example in which these two formulations are not
logically equivalent. However, this argument is complicated by the fact, mentioned
in Sect. 3.2 above, that the absolute temperature 7 must be non-zero in order to act
as an integrating divisor, a condition from which the existence of entropy is derived.
If one allows states in I',, for which T = 0, the entropy will become indeterminate
in such states. And while Afanassjewa (1925) acknowledges this complication (in
her footnote 10) the present authors believe the argument is not fully convincing.'!

"'Her argument conceives a Carnot cycle between two heat reservoirs, one with positive absolute
temperature 77, and the second with temperature 75 = 0. In this cycle the system would absorb
heat during the isothermal process in contact with the first reservoir, Q1 = 77 A S}, but would not
exchange heat during the isothermal process with the second reservoir, since 0> = T2 AS; = 0.
She argued that this would provide an example in which the Carnot cycle would provide work
while only extracting heat from a single reservoir, in violation of Kelvin’s statement of the Second
Law. The problem with the argument is not just that that the definition of entropy by means of
Pfaff’s theorem fails when 7' = 0. The problem is also that some versions of the Third Law of
Thermodynamics imply that states with absolute temperature 7 = 0 are physically unattainable,
and thus could never be part of a Carnot cycle. Other versions of the Third Law imply that even if
states of a system with 7 = 0 may be reached in a quasi-static process, their specific heat vanish
at 7 = 0, making it impossible to exchange (non-zero) heat which such a system while keeping
its temperature at 7 = 0. And although one can debate whether the Third Law (which Afanassewa
(1925) does not discuss) is or is not part of classical thermodynamics, what is clear is that there are
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However, her next example is much more intriguing and convincing. This example
concerns a Carnot process, such that the temperature 7, of the cold reservoir is
negative, while T is positive. (This avoids the complication associated with the
integrating divisor issue which arises only when 7 = 0.) She argued that, in this
case, the system actually absorbs heat Q, from the reservoir at temperature 7, < 0
during the Carnot cycle, even if it emits entropy AS < O to the reservoir, since
0, =T,AS > 0. Of course, in this Carnot cycle, the total entropy change of the
system is zero (in accordance with the requirement that f dS = 0) since the system
also absorbs an entropy AS from the reservoir at temperature 77 during the cycle.
But the work W produced will be Q; + Q» rather than Q; — Q, for an ordinary
Carnot process, and its efficency will be more than 100% since & =1 — 2 > 1.

[ T

She argued that this is in conflict with Clausius’s statement.'?

Afanassjewa hence claimed that while Axioms A, B and C are all necessary to
derive the Clausius statement, this example showed they are not sufficient even taken
together: one additional axiom is needed in order to rule out the possibility that heat
flows from a colder to a hotter body. For this purpose, she proposed the following
Temperature axiom:

Axiom D. The absolute temperatures have one and the same sign for all states.

By requiring that when the higher temperature 7 is positive the lower temperature
T, must be positive too, one can complete the derivation of Clausius statement of the
Second Law. Afanassjewa also noted that Axiom D is not needed to derive Kelvin’s
statement because the latter does not speak of the direction in which heat is transferred
but only of the fact that more than one reservoirs be used. From this, she concluded:
‘We therefore see that the two principles do not say the same thing and that one can
derive neither Thomson’s [i.e. Kelvin’s] nor Clausius’ principle from the existence
of entropy alone’ (p. 938).

Itis aremarkable feat that Afanassjewa (1925) was able to show that Clausius and
Kelvin statements are not logically equivalent when one admits both positive and
negative absolute temperatures.'® This, in turn, raises the further question whether

several ways in which one can deny the conclusion of her argument here (the violation of Kelvin’s
statement of the Second Law), while remaining consistent with her other axioms.

12 Actually, she does not explain this conflict in detail. Perhaps the easiest way to construct a direct
violation of the Clausius formulation of the Second Law is to combine the envisaged Carnot cycle
with 7> < 0 with another ordinary Carnot cycle, this second one between reservoirs at temperatures
T and T3 , with 71 > T3 > O running in reverse. If one arranges this second cycle such that (i) it
absorbs all the work produced in the first cycle, so that the combined cycle produces no work at all,
and (ii) the amount of heat Q that the first cycle absorbs from the heat reservoir at 77 is balanced
by the same amount of heat Q| being returned to that same reservoir during the second reversed
Carnot cycle, the overall effect of the combined cycle will be one that produces no other change
than to absorb heat Q; from the reservoir at temperature 77 < 0 and emit the same amount of heat
to the reservoir at temperature 73 > 0. Thus, there would be a heat exchange in this combined cycle
from a low temperature 7> < 0 to a higher temperature 73 > 0, without any further changes taking
place.

130ne may note that Carathéodory’s (1909) axioms for thermodynamics actually also do not deter-
mine the sign of absolute temperature, but only upto arbitrary multiplicative and additive constants.
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such formal conditions are physically possible, that is whether ‘absolute zero’ and
‘absolute negative temperatures’ can be achieved. Afanassjewa did not dwell too
much into this issue. But she suggested that the question whether the conditions for
negative absolute temperatures are physically possible can be answered by looking
at the microscopic interpretation of thermodynamical systems. As she wrote in a
footnote (numbered 14 in the translation):

In the interpretation of absolute temperature in classical statistical mechanics, it naturally

follows that this quantity can only be positive, in so far as it is the mean kinetic energy of

molecules. However, whenever one is compelled —e.g. because of quantum theory— to

deviate from this interpretation, Axiom D requires another special statistical interpretation.
(p. 938)

The importance and originality of these considerations were borne out when 30 years
later Ramsey (1956) pointed out concrete examples of quantum systems for which
the absolute temperature can actually become negative.

The systems Ramsey considered are spin systems, whose Hamiltonian have a
leading term that depends of the orientation of these spins in an external magnetic
field. The system has a minimum value for its energy (obtained in the ground state
when all spins are antiparallel to the magnetic field, but, —and this is the important
point that distinguishes such systems from classical gases—it also has a maximum
energy, in a ‘ceiling state’ where all spins are orientated parallel to the magnetic
field. In a statistical treatment, roughly speaking, the entropy in both states is zero
(because they can both be realized in a single way only). This means that if we plot
the entropy as a function of energy, the entropy will be increasing with energy, until
we reach the value halfway between the energy maximum and minimum, where the
entropy attains it’s maximum. (This is a state in which 50% of the spins are parallel
and 50 % are antiparallel.) If we increase the energy further, the entropy starts to
decrease, eventually dropping to zero in the ceiling state.

If one then assumes, as customary in statistical mechanics and thermodynamics,
that the absolute temperature obeys the relation

1 = d—S (3.12)
T dU
one sees that the absolute temperature of the system will be negative on the decreasing
flank of the entropy curve, growing from —oo at the midway point, to O at the ceiling
state.

He argues that the choice of the multiplicative constant can be settled by convention, while the
additive constant is to be determined “once and for all” by one single empirical observation of some
irreversible process (p. 381), which together settle the sign of absolute temperature.

Although one might argue that Carathéodory thus also allowed for the conceivability of neg-
ative absolute temperatures, or at least pointed out that the sign of absolute temperature was not
determined by his axioms alone, the fact that he considered this sign to be settled for all states and
all systems by just one single empirical observation, shows that he did not conceive of the possi-
bility of a system capable of having states with both positive and negative absolute temperature,
let alone conceive of carrying out as Carnot cycle in such a system between them. In this respect,
Carathéodory (1909) stands in marked contrast to Afanassjewa (1925).
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In fact, Ramsey analyzed, just like Afanassjewa did 30years earlier, Carnot pro-
cesses between reservoirs of positive and negative temperature, and discussed the
question whether the Kelvin and Clausius formulation of the Second Law are equiv-
alent in this case. And just like Afanassjewa had done before him, he reached the
conclusion that the answer is negative.

It is interesting to note, though, that while Afanassjewa argued the two formula-
tions are inequivalent in this case in the sense that Clausius’ formulation fails while
Kelvin’s formulation still holds; Ramsey argued for the opposite inequivalence, i.e.
that Clausius’ formulation holds while Kelvin’s formulation fails. This distinction
in their conclusions is mainly due to Ramsey’s argument that, from a physical per-
spective one should regard thermal states of a spin system with negative absolute
temperature as hotter than any thermal state with a positive temperature.'* Thus,
according to Ramsey, the ordering of temperature values in terms of the relation
‘hotter than’ or ‘colder than’ will not track the ordering of their numerical values.
Rather, one would have to define that temperature 77 is hotter than 7 if and only if
—1/T2 < —l/Tl.

Ramsey’s argument about the reordering of numerical temperature values is of
course eminently reasonable for the kind of systems he considered. We do want to
remark, however, that Afanassjewa obviously did not have such concrete examples at
her disposal and was reasoning in abstracto, so that this idea of imposing a new con-
vention in which the ‘hotter than’ ordering is separated from the numerical ordering
could hardly have occurred to her. We also like to note that Ramsey’s convention of
temperature ordering skews the analysis a bit in Clausius’ favour, because it actually
assumes Clausius’ claim that heat always flows from hotter to colder bodies. This
claim is thereby turned from its original role as an empirical law into a defining con-
dition of what it means for one temperature to be hotter than another and makes his
claim (which is part of Clausius’ formulation of the Second Law) true by definition.

However, in retrospect, it does not matter so much that Ramsey (1956) argued that
Kelvin’s formulation of the Second Law fails and Clausius’ formulation holds, vis-a-
vis a Carnot process with both positive and negative temperatures, while Afanassjewa
argued for the opposite viewpoint; nor that she responded by including an axiom D
that amounts to forbidding negative temperatures, where Ramsey displayed a con-
crete physical example of systems with negative temperatures. It remains striking
that Afanassjewa analyzed the conceptual possibility of negative absolute temper-
atures and argued that such systems might be required in quantum theory and that
admitting such states in thermodynamics would invalidate the equivalence between

141n simple terms, the argument is that if we would put two such systems into thermal contact, and
allow them to equilibrate, this would bring about an equal distribution of energy. Since systems with
negative temperature always have more energy per spin than systems with positive temperature, the
heat flow in such an equilibration process will be from the system at negative temperature to the
system of positive temperature. If one insists on Clausius’ claim that heat always naturally flows
from a hotter to a hotter than colder body, one concludes that a system with negative temperature
will be hotter than any system with positive temperature.
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Kelvin’s and Clausius’ formulation of the Second Law, some 30years before this
became an accepted view in the physics community. Once again, she appears to have
been ahead of her times.

3.6 Conclusion

In this chapter we discussed Afanassjewa’s work on the foundations of thermody-
namics. We argued in the in Sects. 3.1 and 3.2 that her 1925 paper was inspired by
the axiomatic approach to this theory by Carathéodory (1909) and was elaborated
in a series of further papers (some of which remained unpublished) culminating in
the 1956 publication of her book Die Grundlagen der Thermodynamik, a work that
must have been largely composed in or before 1940.

Our discussion shows how Afanassjewa’s work is particularly relevant to some
themes in the current debate in philosophy of physics, on which we focused through-
out the manuscript. The first theme hinges on her distinction between quasi-processes
and quasi-static processes and we showed how this distinction can be employed
to assuage an alleged paradox concerning thermodynamically reversible processes
(Sect.3.3). The second theme has to do with the distinction between heat and work,
which she captured with an explicit axiom in her 1925 paper, being the first author to
note this distinction and to elucidate it by means of an explicit example (Sect. 3.4).
The third theme deals with the Second Law of Thermodynamics and the alleged
logical equivalence between Clausius’ and Kelvin’s statements of this law: we have
argued that, already in 1925, Afanassjewa noted that the equivalence holds only if
one consistently adopts absolute temperatures with the same sign and that she was
the first author to conceive of the possibility to perform a Carnot cycle on a single
system between state of both positive and negative absolute temperatures, thereby
anticipating a view that only became recognized in the physics community 30 years
later (Sect.3.5).1
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15 A referee referred us to two very relevant recent papers by David Lavis (2018, 2019). Lavis (2018)
addresses Norton’s paradox, which we discussed in Sect.3.3 and discusses a proposal to solve it
by what he calls the ‘demarcation interpretation’ of reversible processes, which seems very close
to Afanassjewa’s view in her (1956) book, but without referring to her work. The second paper,
Lavis (2019) is most relevant to our discussion on negative temperatures in Sect. 3.5 and does refer
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cycles between two reservoirs at positive and negative temperature are possible, his paper disagrees
with her conclusion that these would lead to a violation of Clausius’ statement of the Second Law.
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Ramsey convention about how to order temperatures by the relation ‘hotter than’ (which makes any
negative temperature hotter than any positive temperature), while Afanassjewa did not adopt this
convention and regarded states at negative temperatures as colder than positive temperatures.



3 Afanassjewa and the Foundations of Thermodynamics 77

J.U. also thanks the Vossius Centre for the History of Humanities and Sciences at the University
of Amsterdam and the Descartes Centre for the History and Philosophy of the Sciences and the
Humanities at Utrecht University, the University of Geneva, the Polytechnical University of Milano,
The University of Salzburg, and the Erwin Schrodinger Institute at the University of Vienna, for
financial support and audiences at these various locations for their feedback.

References

Born, M. (1921). Kiritische Betrachtungen zur traditionellen Darstellung der Thermodynamik.
Physikalische Zeitschrift, 22, 218-224, 249-254, 282-286.

Brown, H. R., & Uffink, J. (2001). The origins of time-asymmetry in thermodynamics: The minus
first law. Studies in History and Philosophy of Modern Physics, 32, 525-538.

Einstein, A. (1949). Autobiographical notes. In P. A. Schilpp (Ed.), Albert Einstein, Philosopher-
Scientist (p. 33). Evanston Ill: The Library of Living Philosophers.

Carathéodory, C. (1909). Untersuchungen iiber die Grundlagen der Thermodynamik. Mathematis-
che Annalen, 67, 335-386.

Chang, H. (2004). Inventing temperature: Measurement and scientific progress, Oxford studies in
the philosophy of science. New York: Oxford University Press.

Ehrenfest-Afanassjewa, T. (1925). Zur Axiomatisierung des Zweiten Hauptsatzes der Thermody-
namik. Zeitschrift fiir Physik, 33, 933-946.

Ehrenfest-Afanassjewa, T. (1936a). Over quasi-statische en niet-statische toestandsveranderingen.
Wis- en Natuurkundig Tijdschrift, 8, 29-34.

Ehrenfest-Afanassjewa, T. (1936b). Over omkeerbare en onomkeerbare processen. Wis- en Natu-
urkundig Tijdschrift, 8, 38—40.

Ehrenfest-Afanassjewa, T. (1948). Die Grundlagen der Thermodynamik; college van Mevr. Dr. T.
Ehrenfest-Afanassjewa, 1947—1948 Universiteit Leiden.

Ehrenfest-Afanassjewa, T. (1956). Grundlagen der Thermodynamik. Brill: Leiden.

De Haas-Lorentz, G. L. (1938). De beide hoofdwetten der thermodynamica en hare voornaamste
toepassingen. ’s-Gravenhage: Nijhoff.

Lavis, D. A. (2018). The problem of equilibrium processes in thermodynamics. Studies in History
and Philosophy of Modern Physics, 62, 136—144.

Lavis, D. A. (2019). The question of negative temperatures in thermodynamics and statistical
mechanics. Studies in History and Philosophy of Modern Physics. to appear.

Lieb, E. H., & Yngvason, J. (1999). The physics and mathematics of the second law of thermody-
namics. Physics Reports, 310, 1-96.

Norton, J. D. (2014). Finite idealizations. In European philosophy of science—philosophy of science
in Europe and the viennese heritage: Vienna circle institute yearbook (Vol. 17, pp. 197-210).
Springer: Dordrecht-Heidelberg-London-New York.

Norton, J. D. (2016). The impossible process: Thermodynamic reversibility. Studies in History and
Philosophy of Modern Physics, 55, 43-61.

Planck, M. (1926). Uber die Begrundung des zweiten Hauptsatzes der Thermodynamik. Sitzungs-
berichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse,
453.

Ramsey, N. F. (1956). Thermodynamics and statistical mechanics at negative absolute temperatures.
Physical Review, 103, 20-28.

Perrin, J. B. (1913). Les atomes. Paris: Librairie Félix Alcan.

Thomsen, J. S., & Harka, T. J. (1962). Strange carnot cycles; Thermodynamics of a system with a
density extremum. American Journal of Physics, 30, 26-33.

Uffink, J. (2001). Bluff your way in the second law of thermodynamics. Studies in History and
Philosophy of Modern Physics, 32, 305-394.



78 J. Uffink and G. Valente

Valente, G. (2019). On the paradox of reversible processes in thermodynamics. Synthese, 196,
1761-1781.
Van der Waals, J. D., & Kohnstamm, Ph. (1927). Lehrbuch der Thermostatik. Leipzig: J.A. Barth.

Tatiana Afanassjewa and Paul Ehrenfest at their wedding in December 1904 in Vienna.
Source: M.J.Klein, Paul Ehrenfest; the Making of a theoretical Physicist, Amsterdam: Elsevier, 1970

The house that Afanassjewa designed, in a distinctly Russian style, in the Witterozenstraat 57,
Leiden, in 1913. Characteristic of her design is that the house has a relatively closed facade,
but opens up to the backside. View from the back. Source: Rijksdienst voor het Cultureel Erfgoed
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The same house, seen from the streetside. In the facade there are two engravings.
Source: J. Uffink

Two engravings on the facade of the house at Witterozenstraat 57. The translation
of the first is “Here, Professor Ehrenfest lived and worked—1933. Offered by
fraternity Christiaan Huygens, 1 May 1971”
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The second engraving reads “His wife Tatiana Afanassjewa—far ahead of her
times—opened this house for people and ideas”. Source: J. Uffink

Tatiana Afanassjewa in front of Witterozenstraat 57 with daughter
Galinka, around 1917. Source: family archive of Ehrenfest-
Affanasjewa relatives
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4

Afanassjewa teaching mathematics in Ordzhonikidze Ossetia, Soviet Union, 1933.
Source: family archive of Ehrenfest-Affanasjewa relatives

Afanassjewa in her study in Leiden, 1956. Source: family archive of
Ehrenfest-Affanasjewa relatives
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A portrait of Tatiana Afanassjewa in 1954 by painter Harm Kamerlingh Onnes,
a nephew of the Leiden physicist Heike Kamerlingh Onnes. Source: Museum de
Lakenhal, Leiden
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Chapter 4 ®)
Ehrenfest and Ehrenfest-Afanassjewa on | ¢
Why Boltzmannian and Gibbsian

Calculations Agree

Charlotte Werndl and Roman Frigg

4.1 Introduction

The relation between the Boltzmannian and the Gibbsian formulations of statisti-
cal mechanics (SM) is one of the major conceptual issues in the foundations of the
discipline. In their celebrated review of SM, Paul Ehrenfest and Tatiana Ehrenfest-
Afanassjewa discuss this issue and offer an argument for the conclusion that Boltz-
mannian equilibrium values agree with Gibbsian phase averages.! In this paper, we
analyse their argument, which is still important today, and point out that its scope is
limited to dilute gases.

IThe original paper was published in German under the title ‘Begriffiche Grundlagen der Statistis-
chen Auffassung in der Mechanik’ in 1911. Throughout this paper, we quote the English translation
that came out in 1959 under the title ‘The conceptual foundations of the statistical approach in
mechanics’.
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4.2 Boltzmannian and Gibbsian Statistical Mechanics

In statistical mechanics (SM) there are two main theoretical frameworks, namely
Boltzmannian and Gibbsian SM.? Consider a system S consisting of the following:
X is the set of all possible states (the state space), px is the probability measure on
X (that is assumed to be invariant under the dynamics) and 7;(x) is the dynamics
specifying the state of the system after ¢ time steps given that it started in x.’

At the beginning of Boltzmannian SM stands the introduction of macro-states
M;, j =1, ..., m, which are characterised by the values of a set of macro-variables
{fi, ..., fr} (where both m and k are in N). A macro-variable f; : X — R is a
function that associates a value with each x € X. Capital letters F; denote the values
of the f;. A macro-state M; is defined by a particular set of values {F1, ..., Fi}.
Macro-states are assumed to supervene on micro-states, and hence there corresponds
a micro-region X m; S X to each M;, which consists of all x € X for which the
macroscopic variables assume the values characteristic for M;. The X, together
form a partition of X, meaning that they do not overlap and jointly cover X. One
of the macro-states is then singled out as the equilibrium state, and the equilibrium
values of the f; are the values F; that the macro-variables assume in the equilibrium
macro-state. The standard line on how to single out the equilibrium state is that
size is the determining factor: the equilibrium state is the state for which pyx (X )
assumes the highest value. As we will see in Sect. 4.5, this definition stands in need
of qualification, but since it is widely used, we work with it for now and see how far
it takes us.

The most important method to determine the largest macro-state is Boltzmann
(1877) combinatorial argument, which Ehrenfest and Ehrenfest- Afanassjewa discuss
in detail (1959, 26-30). The argument runs as follows. The state of one particle is
given by a point in the six-dimensional state space X, and thus the state of the system
(of the N particles) is given by N points in X ;. Because the system is confined to a
finite container and the energy is constant, only a certain finite part of X is accessible.
This accessible part of X is then divided into cells of equal size dw whose dividing
lines run parallel to the position and momentum axes. The result is a finite partition
Q:={wi, ...,w},l € N.The cell in which a particle’s state lies is referred to as the
particle’s coarse-grained micro-state. The specification of the coarse-grained micro-
state for all particles is called an arrangement. Finally, a specification of the number
of particles in each cell is referred to as a distribution D = (N, N, ..., N;) (N;
is the number of particles in cell w;). Each distribution is compatible with several
arrangements, and the number of arrangements corresponding to a given distribution
Dis G(D) = N!/Ni!Np!..., N

2We briefly review both frameworks in this section. More extensive presentations can be found
in Frigg (2008) and Uffink’s (2007). See Frigg and Werndl (2019) for a discussion of the Gibbs
formalism in particular.

3In this paper, we mostly follow Ehrenfest and Ehrenfest-Afanassjewa and consider deterministic
systems. In our (2017) we discuss stochastic systems and show that the main results carry over to
the stochastic context. We consider an explicitly stochastic system below in Sect.4.6.
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Ehrenfest and Ehrenfest-Afanassjewa now associate macro-states with distribu-
tions (1959, 49-50): each distribution defines a macro-state. This assumption is
motivated by the fact that the macro-properties of a system are a function of the
micro-properties, and hence a given macro-variable will assume different values for
different distributions (we come back to this assumption below in Sect. 4.4). Clearly,
every micro-state x of X corresponds to exactly one distribution D(x). The macro-
region Xp is then simply defined as the set of all x that are associated with the
macro-state D.

The equilibrium macro-region is the region X, with the largest measure. To
determine this largest macro-region, Boltzmann (1877) provided a classical argu-
ment, which Ehrenfest and Ehrenfest-Afanassjewa discuss in detail (1959, 27-31).
Boltzmann assumed that the energy e; of particle i is only dependent on the cell
in which it is located (and not on the location of the other particles), implying that
the total energy of the system is £ = Zf: 1 Nie;. With the further assumption that
the number of cells in €2 is small compared to the number of particles, Boltzmann
showed that px (X p) has a maximum when

N; = vet, 4.1)

where v and A are parameters which depend on N and E. Equation (4.1) is now
known as the discrete Maxwell-Boltzmann distribution. The equilibrium macro-
state, therefore, corresponds to the Maxwell-Boltzmann distribution.

However, as Ehrenfest and Ehrenfest- Afanassjewa rightly emphasise (1959, 30),
there is a last step missing. The X as defined above are 6 N-dimensional, and
Eq. (4.1) gives us is the distribution for the cell of largest size relative to the Lebesgue
measure py (or more precisely, relative to the 6 N-dimensional subset Xgg of X
defined by the condition that £ = Zﬁ;l N;e;). However, by assumption, the system
has constant energy, and so we know that the system’s motion takes place on the
6N-1-dimensional energy hypersurface X . Hence, the relevant macro-regions are
ones that lie in X g rather than in X. A quick fix is the following: define the relevant
6N -1-dimensional macro-regions as the intersection of the 6 N-dimensional X p, with
X g, and use the restriction p g, the restriction of py to X g, to measure their size.

Ehrenfest and Ehrenfest-Afanassjewa are careful to point out that this is not
enough to give us what is needed, namely the macro-region of largest size rela-
tive to the measure 1y, on the 6N — 1-dimensional set X g. Standard presentations
of the combinatorial argument simply assume that the possible distributions and
the proportion of the different distributions would not change if macro-states were
instead defined on X g, which yields the desired result that the equilibrium region is
the largest region on X . Ehrenfest and Ehrenfest-Afanassjewa (1959, 30) are more
careful. While they also adopt this assumption, they stress that it is in need of further
justification.

So the conclusion Ehrenfest and Ehrenfest-Afanassjewa arrive at is that in the
Boltzmannnian framework the observed value in equilibrium for the observable f
is the value of f in the macro-region corresponding to the Maxwell-Boltzmann
distribution.
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Gibbsian SM studies ensembles, infinite collections of independent systems that
are all governed by the same equations but start in different initial states. Formally,
an ensemble is a probability density p(x, t), x € X, describing the probability of
finding the state of a system chosen at random from the ensemble in a certain region
of X at time 7.

Given an ensemble p, the Gibbs entropy is

Solpl = —ks / p(x, 1) loglp(x, ]dx, 4.2)
X

where kp is the Boltzmann constant. An ensemble p(x, t) is called stationary if
and only if it does not depend on time, i.e. p(x,t) = p(x) for all t. In Gibbsian
SM equilibrium is a property of an ensemble. More specifically, the ensemble is in
equilibrium if and only if it is stationary, and sometimes it is also required that it
has maximum Gibbs entropy given the constraints imposed on the system. The most
common constraints give rise to the microcanonical, canonical and grand-canonical
distributions (1959, 46-47).

As in Boltzmannian SM, physical observables correspond to a set of real-valued
functions f;, and the phase average of such a function in equilibrium is defined as

(fi) =/ fi(x)p(x)dx. (4.3)
X

According to the canonical understanding of Gibbsian SM, what is observed in
experiments on systems in equilibrium are such phase averages (1959, 47 and 49).
There is, however, a question about the scope of this claim: according to Gibbsian
SM, does one always observe phase averages or are phase averages only observed in
certain situations? The answer to this question is a matter of dispute which depends
on how exactly Gibbsian SM is interpreted (for a discussion see Frigg and Werndl
2019). It is not entirely clear what reading of Gibbsian SM Ehrenfest and Ehrenfest-
Afanassjewa endorse (though it seems to us that they rather endorse the claim and
that, according to Gibbsian SM, always phase averages are observed). Fortunately,
this issue does not matter in what follows.

Now, we are in a curious situation. Two different frameworks make predictions
for the same experimental values. The Boltzmannian account says that the observed
equilibrium value for the observable f; is the value that it assumes in the macro-
region corresponding to the Maxwell-Boltzmann distribution, while the Gibbsian
account says that that the equilibrium value is ( f;). Do these values coincide? If so,
why? If not, which of the values, if any, is correct?
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4.3 Ehrenfest and Ehrenfest-Afanassjewa on Gibbs Versus
Boltzmann

Ehrenfest and Ehrenfest-Afanassjewa opt for the first solution and set out to show
that Boltzmannian equilibrium values and Gibbsian phase averages coincide. Their
argument is an important one, and similar points have been made more recently by
Davey (2009), Myrvold (2016). They begin by discussing the Gibbsian treatment
of the gas with the observable f.* According to the Gibbsian framework, what is
observed in equilibrium is the phase average. Because energy is conserved, it would
be natural to consider the phase average relative to the micro-canonical ensemble
(because this is the stationary distribution of maximum Gibbsian entropy under the
constraint of constant energy). However, Ehrenfest and Ehrenfest-Afanassjewa do not
do this and instead consider the phase average with respect to the canonical ensemble.
The canonical ensemble is the stationary distribution of maximum entropy when the

energy is allowed to vary:
W—E(q.p)

pe(g, p)=e © 4.4

where E(q, p) is the total energy, ® is an constant, and W is determined by the
constraint that [, p.(¢, p) = 1.

The reason why they consider the phase average with respect to the canonical
ensemble is unclear. A possible motivation might be that they want to show that it
does not matter which distribution is chosen: Gibbsian SM leads to the same result
as Boltzmannian SM regardless of whether one works with the microcanonical or
the canonical ensemble.

As a first step they appeal to the well-known result, often referred to as the equiv-
alence between the microcanonical and canonical distributions that holds when the
number of particles of a gas is extremely large:

In an ensemble which is canonically distributed with the modulus ® = ®g, an overwhelm-

ing majority of individuals will have nearly the same total energy £ = E¢ (Ehrenfest and
Ehrenfest-Afanassjewa 1959, 48).

(Here ®y is the fixed value of ® in Eq. (4.4) of the canonical distribution above and

E) is the energy value that nearly all individuals will have for the fixed value ®).
Based on this result Ehrenfest and Ehrenfest-Afanassjewa (1959, 48-49) argue

that it is plausible that | « f(x)dp., the phase average with respect to the canonical

distribution p. on X, is approximately equal to |’ x, J (X)dpn, the phase average with
respect to the microcanonical distribution p,, on Xy (when f is restricted to Xg).
The next step is the vital move in the argument. Recall that the combinatorial argu-
ment shows that the equilibrium macro-region is the largest macro-region. So the
macro-value corresponding to the Maxwell-Boltzmann distribution is the macro-
value that is taken by more microstates than any other macro-value on Xg.> It is

“For ease of notation, we suppress the subscript ‘i from now.

SStrictly speaking, this is true only under an additional assumption that we discuss in the next
section.
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crucial to be clear on the sense of ‘large’ that is being used here. What the combina-
torial argument shows is that the equilibrium macro-region is larger than any other
macro-region. It does not show that the equilibrium macro-region is large in an abso-
lute sense, i.e. that it occupies the largest part of X g. The latter does not follow from
the former. A macro-region can be larger than any other macro-region without being
large relative to X g. Ehrenfest and Ehrenfest-Afanassjewa bridge the gap between a
relative and the absolute sense of ‘large’ by referring to results due to Jeans (1904,
Sects.46-56), who argues that nearly all states in X g are in the macro-region corre-
sponding to the Maxwell-Boltzmann distribution. Hence, f assumes the equilibrium
value on almost all states in X g. From this, they infer that this value is approximately
equal to the Gibbsian phase average derived in the previous paragraph.

Sotheir conclusion is thatin a system in which the combinatorial argument applies,
the Boltzmannian equilibrium value and the Gibbsian phase average with respect to
the macro-variable f are approximately the same.

4.4 Assessment of Ehrenfest and Ehrenfest-Afanassjewa’s
Argument

The considerations we make to assess the Ehrenfest and Ehrenfest-Affanassjewa
argument fall into two groups. Considerations in the first group concern the combi-
natorial argument and its limitations; considerations in the second group concern the
identity argument in the last section. We will focus mainly on the second group but
will begin by making a few observations about the first.

As has been pointed out previously,® a core assumption of the combinatorial
argument, namely that £ = Zf: 1 Nie;,is very restrictive. In essence, this assumption
implies that the argument only applies (even in an approximate form) to dilute gases.
So it is unsurprising that Ehrenfest and Ehrenfest-Afanassjewa (1911, 36-60) talk
about gas systems when presenting the combinatorial argument. However, it remains
unclear from the text whether they are clear on the fact that it only applies to dilute
gases.

Second, the conclusion that the macro-value of f in the Maxwell-Boltzmann
distribution is the macro-value that is taken by more micro-states than any other
macro-value on Xy follows only under the strong assumption that f assumes a
different value for every macro-region. However, Lavis (2005, 2008) pointed out
that this need not always be the case.” Macro-regions can show degeneracy in the
sense that f can assume the same value in several regions. It is possible that a
number of such (non-equilibrium) macro-regions taken together are larger than the
equilibrium region, and so f assumes the equilibrium value in a region of the state
space that is smaller than the union of the degenerate macro-regions. Lavis (2005,

6See, for instance, Uffink (2007) and Werndl and Frigg (2015b).

TLavis (2005, 2008) discussed the case of the Boltzmann entropy, but the point obviously generalises
to phase functions.
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2008) shows that this happens in the case of the baker’s gas, thereby driving home the
point that degeneracies causing difficulties is more than just a theoretical possibility.

Let us set these concerns aside and assume, for the sake of argument, that we
are dealing with a dilute gas and a ‘well-behaved’ function f (we will discuss
what happens if these assumptions fail in Sect.4.5). Does Ehrenfest and Ehrenfest-
Afanassjewa’s equivalence argument hold under these assumptions? It is obvious that
their argument contains a gap. They conclude from the fact that f assumes the equi-
librium value on nearly all states in X g that the average of f over X g is approximately
equivalent to that value. This, however, is true only if the non-equilibrium values are
not disproportionately far away from the equilibrium value. If the non-equilibrium
values differ significantly from the equilibrium values, their contribution to the aver-
age can be significant and the average need no longer be equal to the equilibrium
value of the function, not even approximately.

To rule out such a scenario one needs to assume that f satisfies some kind of ‘small
fluctuation condition’. The most common condition of this kind is now known as
the Khinchin Condition. The condition plays a crucial role in the work of Khinchin
(1960 [1949]) and variants of it have been appealed to in the foundational literature
on SM, for instance by Malament and Zabell (1980), Myrvold (2016). This condition
requires that the observable f equals the phase average nearly everywhere on phase
space. Formally:

Thereisa X € X with px(X) = 1 — § for a small § > O such that | f(x) — (f(x))| < e for
all x € X and a very small € > 0.

Under Ehrenfest and Ehrenfest-Afanassjewa’s assumptions the Boltzmannian equi-
librium macro-region satisfies the condition on X. Let Feq, be the value of f in that
macro-region. It then follows that [{ f (x)) — F,4.| < €, and therefore the Boltzman-
nian value and the Gibbsian average agree, at least approximately.

Ehrenfest and Ehrenfest-Afanassjewa, however, do not appeal to this formulation
of the condition, but to a variant of the Khinchin condition that we call the Ehrenfest-
Afanassjewa Condition. The condition is that the observable f is approximately equal
to the Boltzmannian equilibrium value nearly everywhere on phase space and that
the observable does not take extreme values on the rest of the phase space. Formally,
the Ehrenfest-Afanassjewa Condition can be formulated as follows®:

Consider a system of the kind introduced in Sect. 4.2 endowed with an observable f. Further
assume that the system has a Boltzmannian equilibrium with equilibrium macro-value Feyy,.

8 A variant of the Ehrenfest-Afanassjewa Condition requires that the observable f is constant nearly
everywhere on phase space and does not take extreme values on the rest of the phase space:

There is an constant C € R and a X C X with /Lx()_() =1 — ¢ (for asmall 6 > 0) such that
1) |f(x) —C| <eforallx € X foravery smalle > 0and (ii) | fx\}-( f@)dux —CoH| <~
(for a very small v > 0).

Because the Boltzmannian equilibrium macro-value F,,, takes up more than ¢ of phase space, it
follows that F,g, is very close to C. Therefore, | f (x) — Fequ| < €1 forasmalle; > Oforall x € X
and | fx\)-( f)dpx — Fequd)| < 1 (foravery smally; > 0). This is in fact the original Ehrenfest-
Afanassjewa Condition and so the variant is in fact equivalent to the original Ehrenfest-Afanassjewa
Condition.
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Then there is an X cX with ,ltx()_() =1—¢ (for a small § > 0) such that (i) | f(x) —
Fequ| < € for all x € X (for a very small € > 0) and (ii) |fX\)-( fx)dux — Fequé)l <7~
(for a very small v > 0).

A simple calculation shows that for systems that satisfy the Ehrenfest-Afanassjewa
Condition with respect to f, the phase average is approximately equal to the Boltz-
mannian equilibrium macro-value Fg,,:

|<f(x)> - Fequ| =

I/_ f)dpx — Fequ(1 =0) |+ 1 [ f)dpx — Fequd] <
X X\X

e(1 — &) 4+ v (because of (i) and (ii) of the Khinchin condition).

It is interesting to discuss both the Khinchin and the Ehrenfest-Afanassjewa con-
ditions because, depending on the context, one or the other may turn out to be more
useful. There is, however, a slight mismatch between the Ehrenfest-Afanassjewa
Condition and the calculations of Ehrenfest and Ehrenfest-Afanassjewa: they per-
form Gibbsian phase space averaging with the canonical and not the micro-canonical
distribution. However, because of the equivalence of the micro-canonical and macro-
canonical ensemble as discussed above this difference does not matter; and if for
some reason it did, one could simply perform the Gibbsian calculations with the
microcanonical ensemble.

It is important to note that neither of the two conditions is in any way trivially
true. Khinchin could prove his condition only for the special case of sum functions
in non-interacting systems (sum functions are functions in many-particle systems
that can be written as a sum over one-particle functions). The generalisation of this
result to the case interacting system is a veritable challenge and no general solution
has been found to date.’

Ehrenfest and Ehrenfest-Afanassjewa argue in their survey that the Ehrenfest-
Afanassjewa condition is satisfied. Their argument is valid but only subject to a
change in one of the assumptions and an additional assumption in their argument.
Namely, first, as outlined above, they assume (by referring to Jeans 1904, Sects. 46—
56) that nearly all states in X g are in the macro-region corresponding to the Maxwell—
Boltzmann distribution. We have seen above that this need not always be the case.
Furthermore, a closer look at Jeans’ text reveals that he does not actually offer a
proof of the claim. What Jeans shows is that the nearly all of phase space X is taken
up by macro-regions with a distribution D very close to the Maxwell-Boltzmann
distribution. Hence the assumption that the macro-region corresponding to the exact
Maxwell-Boltzmann distribution is large in absolute terms has to be given up. For-
tunately, a weaker assumption provides what we need. All that is required for the
argument to go through is that the observable f is such that macro-regions with distri-
bution D very close to the Maxwell-Boltzmann distribution have approximately the

9See Uffink’s (2007, 1020-1028) for a discussion.
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same macro-value as the macro-regions with the Maxwell-Boltzmann distribution.'?
Note that this amounts to conditions imposed on the Boltzmannian macro-structure f.

With this new assumption in place, Jeans’ (1904, Sects. 46-56) calculations indeed
imply that condition (i) of the Ehrenfest- Afanassjewa Condition is satisfied. Second,
Jeans (1904, Sects.46-56) shows that the states whose macro-values are not very
close to the Maxwell-Boltzmann distribution take up a tiny fraction of phase space,
i.e. X \ X is extremely small. But what is still needed is the further condition that f
does not take extremely large or extremely low values on X \ X (and this again is a
condition imposed on f). With this new assumption in place, (ii) of the Ehrenfest-
Afanassjewa condition is satisfied. Hence, we conclude that with the modifications
Jjust outlined the Ehrenfest-Afanassjewa condition is satisfied and the Boltzmannian
equilibrium value and the Gibbsian phase average lead to approximately the same
result.

To sum up, Ehrenfest and Ehrenfest- Afanassjewa identify an important case where
the Boltzmannian equilibrium values and the Gibbsian phase averages agree. How-
ever, their argument relies on strong assumptions, and while these assumptions are
satisfied for certain observables in the case of dilute gases, the assumptions need
not hold in general. In fact, in the remainder of this paper, we discuss cases that do
not fit Ehrenfest and Ehrenfest-Afanassjewa’s mould. First, there are cases where
the Boltzmannian equilibrium value is different from the Gibbsian phase average.
This shows that it is an important task for foundational debates to find out under
what conditions the Boltzmannian equilibrium value and the Gibbsian phase aver-
age agree or disagree. Examples of disagreement will be discussed in Sect. 6. Second,
there are cases where the Boltzmannian equilibrium value and the Gibbsian phase
averages agree but where the Ehrenfest-Afanassjewa condition is not satisfied. The
Ehrenfest-Afanassjewa condition and the Khinchin condition provide one condition
where there is an agreement (cf. also Werndl and Frigg 2017a; 2017b, 2020).

For instance, consider the Kac ring, consisting of an even number N of sites
distributed equidistantly around a circle. On each site, there is a spin, which can be in
states up () or down (d). A micro-state x* of the Kac ring is a specific combination
of up and down spin for all sites and the full state space Z = KX consist of all
combinations of up and down spins (i.e. of 2 elements). Thereare s,1 < s < N — 1,
spin flippers distributed at some of the midpoints between the spins. The dynamics
rotates the spins one spin site in the clockwise direction every second (or whichever
unit of time one chooses), and when the spins pass through a spin flipper, they change
their direction. The measure that is usually considered is the uniform measure gy
on X* (Lavis 2008). The macro-states usually considered are the total number
of up spins, conveniently labelled as MX, where i denotes the total number of up
spins, 0 < i < N.The Kac-ring with the standard macro-state structure is a paradigm
example where Boltzmannian equilibrium values and Gibbsian phase averages agree.

19Given a certain macro-variable f and an allowable difference between the Gibbsian phase aver-
age and the Boltzmannian equilibrium macro-value, one could precisely quantify what notion of
‘approximately the same macro-value as the Maxwell-Boltzmann distribution’ would be needed
in order for the Khinchin theorem to go through by making use of the calculations in Jeans (1904,
Sects.46-56).
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However, it is not an instance of the Ehrenfest-Afanassjewa-condition because, as
shown in Lavis (2005, 2008), the equilibrium macro-region corresponding to an
equal number of up and down spins only takes up less than half of state space (the
rest is taken up by macro-states that are macroscopically distinguishable from the
Boltzmannan equilibrium macro-state). Other examples where the Boltzmannian
equilibrium value and the Gibbsian phase average agree but where the Ehrenfest-
Afanassjewa condition the Khinchin condition does not apply include the baker’s gas
with the standard macro-state structure and the ideal gas with the standard macro-
state structure (cf. Werndl and Frigg 2017a; 2017b, 2020). The reason why the
Boltzmannian equilibrium value and the Gbbsian phase average agree in these cases
will be discussed later in Sect.4.7.

4.5 Beyond Dilute Gases

As we have seen above, the combinatorial argument is restricted to dilute gases. Most
systems of interest in SM are not of this kind and so this is a serious restriction. In two
recent papers, we have discussed this problem at length and proposed an alternative
Boltzmannian definition of equilibrium (2015a, 2015b). On this definition, it is not
size but ‘residence time’ that defines equilibrium: the macro-state in which the system
spends most of its time is the equilibrium macro-state. More specifically, define L Fg
to be the fraction of time a system spends in region R C X in the long run:

LFr(x) = lim % / 14(T, (x))dT, (4.5)
t—00 0

where 14 (x) is the characteristic function of R: 14(x) = 1 forx € R and 0 otherwise.
‘Most’ is interpreted as requiring that the system spends more time in equilibrium

than in any other macro-state, leading to the notion of an y-e-equilibrium'!:

Let v > 0 and let £ be a very small positive real number, £ < . If there is a macro-
state M Fio FF satistfying the following condition, then it is the vy-e-equilibrium state of
S: There exists a set ¥ € X such that pux(Y) > 1 — ¢, and all initial states x € Y satisfy

Clearly, the value observed in equilibrium is simply the value associated with the
equilibrium macro-state. Further, it should be mentioned that one can prove that
equilibrium states defined in this way correspond to the largest macro-region in the
sense that their measure is v — € larger than any other macro-region (Werndl and

1 Alternatively, ‘most’ can also be understood as referring to the fact that the system spends at least
o > 1/2 of its time in equilibrium, leading to the different notion of an a-e-equilibrium. Nothing
in what follows hinges on which notion of equilibrium is adopted (cf. Werndl and Frigg 2015b and
forthcoming references).
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Frigg 2015b). This provides a notion of equilibrium that is fully general in that it
does not depend on the system’s dynamics and is hence applicable also to strongly
interacting systems like solids and fluids.

4.6 An Example Where Boltzmannian Equilibrium Values
and Gibbsian Phase Averages Differ

In this section, we see that Ehrenfest and Ehrenfest-Afanassjewa’s result fails to gen-
eralise: in strongly interacting systems like solids and fluids the Boltzmannian equi-
librium value and the Gibbsian phase average can differ. The six-vertex model with
energy as the relevant macro-variable will serve as an example of a case where the
Boltzmannian and Gibbsian equilibrium values differ. Consider a two-dimensional
quadratic lattice with N sites on a torus (the choice of a torus ensures that every grid
point has exactly four nearest neighbours, thus allowing to neglect border effects).
Each site is connected to its four nearest neighbours by edges. Each edge carries
an arrow that either points towards or away from the site. The so-called ‘ice-rule’
restricts the allowable arrangements of the arrows: the arrows have to be distributed
in a way such that at each site in the lattice there are exactly two inward and two out-
ward pointing arrows. It is easy to see that there are exactly six configurations of the
arrows that satisfy the ice-rule, and they are shown in Fig.4.1. The name ‘six-vertex
model’ is motivated by the existence of these six configurations.

The reason for the name ‘ice-rule’ is that in frozen water each oxygen atom is
connected to four other oxygen atoms. So the sites can be thought of as representing
oxygen atoms and the edges as representing their bonds. For each bond, there is a
hydrogen atom that does not sit in the middle between the two oxygen atoms but
instead occupies a position closer to one of the oxygen atoms. Thus, the arrows
can be interpreted as indicating to which oxygen atom the hydrogen atom is closer.
The ice-rule then corresponds to the requirement that each oxygen atom has two
close and two remote hydrogen atoms. Not only water ice but also several crystals,
in particular potassium dihydrogen phosphate, satisfy the ice-rule (cf. Baxter 1982;
Lavis and Bell 1999; Slater 1941).

The micro-states of the six-vertex model £ = (&1, ..., y) are given by assigning
one of the six types of configurations of the arrows permitted by the ice rule to each
site in the model. Each of the six configurations has a certain energy €¢;, 1 < j < 6.

ettt

Fig. 4.1 The configurations of the six-vertex model
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Denote by €(¢;) the energy of the jth configuration. Then the energy of the state £
is given by:
N
E©) =) e&). (4.6)

i=1

We now assume that the energy of the different configurations is ¢; = ¢, =0 and
€3 =€4 = €5 = € = 1. The probability of the micro-states is given by the canonical
distribution p(&) = e F©/*T /7 with Z = " e F©/*T Note that this is merely the
probability measure over the micro-states, and is per se neither Boltzmannian nor
Gibbsian. For the six-vertex model, one usually works with a stochastic dynamics.
More specifically, the underlying dynamics is assumed to be an irreducible Markov
chain (Baxter 1982; Lavis and Bell 1999; Werndl and Frigg 2020). The probability
p(&) is then invariant under the Markov dynamics and is thus a stationary probability
measure.

We now study the six-vertex model with the internal energy E as defined in
Eq.(4.6) as the relevant macro-variable for low temperatures. The lowest energy
value is £ = 0, which defines a macro-state M, with macro-region X, = {£*, £y
(here £* is the state where all vertices are in the first configuration, and £ is the
state where all vertices are in the second configuration). Note that the lower the
temperature, the larger the probability of the lower energy states; and the higher
the temperature, the more uniform the probability measure. Hence for sufficiently
low temperatures, the probability mass is concentrated on low-energy states. For
this reason, Xy, is the largest macro-region. Because the dynamics is an irreducible
Markov chain, the model spends most of its time in M. It follows that M is the
Boltzmannian equilibrium state and E = 0 is the Boltzmannian equilibrium value
(cf. Werndl and Frigg 2020).

Let us now turn to the Gibbsian treatment. Here, p(&) is the stationary measure
of maximum entropy, and E is observable. E will assume its lowest value £ = 0
only for two specific micro-states, namely £* and £*. For all other states (and they
all have positive probability), the value of E will be higher. From this, we conclude
that the Gibbsian phase average (E) is greater than zero and hence higher than the
Boltzmannian equilibrium value. Thus, the Boltzmannian equilibrium value and the
Gibbsian phase average differ.

Now, of course, the question is whether this difference can be significant. To see
that this can be so, choose a T such that {€*, £T} is still the largest macro-region
but that the probability of this macro-region is equal or less than 0.5.'? Clearly, the
Boltzmannian equilibrium value is still £ = 0. Yet the second lowest macro-value
is E = +/N, which is the energy corresponding to micro-states where all columns
of the lattice except one are taken up by states which are in the first or the second
configuration, and the states in the exceptional row are all states in the third or

12 A5 we have seen, for sufficiently low temperatures {£*, £} is the largest macro-region. The higher
the temperature, the more uniform is the probability measure. Hence, for sufficiently high tempera-
tures, the largest macro-region will differ from {€*, £*}. Because the canonical distribution is contin-
uous in T, there exists a T such that {£*, £} is the largest macro-region but its probability is < 0.5.
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fourth configuration.' It follows that (E) is higher than +/N /2. Consequently, the
Gibbsian phase average and the Boltzmannian equilibrium value will differ by more
than /N /2, which is not a difference that is negligible (especially when N is large).
Note also that the Boltzmannian macro-value that is closest to the value obtained
from Gibbsian phase space averaging is larger or equal to /N . But this Boltzmannian
macro-value is different from the Boltzmannian equilibrium macro-value, which is
zero. This again underlines that Gibbsian phase space averaging results in a different
outcome than the Boltzmannian calculations.'*

4.7 When Boltzmann and Gibbs Agree

Boltzmannian equilibrium values and Gibbsian phase averages can come apart.
This raises the question under what conditions the two coincide. We have already
seen in Sect. 4.4 that one situation where there is agreement is when the Ehrenfest-
Afanassjewa condition is satisfied. However, as already noted then, there are impor-
tant cases including the baker’s gas with the standard macro-state structure, the
KAC-ring with the standard macro-state structure and the ideal gas with the stan-
dard macro-state structure, that do not, in general, satisfy the Ehrenfest-Afanassjewa
condition or the Khinchin condition.

In our (2017b, 2020) we present another set of conditions under which the Boltz-
mannian equilibrium value and the Gibbsian phase average coincide. Intuitively
speaking, the conditions are: (i) the measure on phase space is the product mea-
sure of the one-constituent space; (ii) the macro-variable considered is the sum of
a one-constituent observable; and (iii) this one-constituent observable takes finitely
many values with the same probability. With these conditions in place, the aver-
age equivalence theorem then shows that, if a Boltzmannian equilibrium exists, the
Boltzmannian equilibrium value and the Gibbsian phase average coincide:

Average Equivalence Theorem (AET). Suppose that a system with phase space X, dynam-
ics T; and measure py is composed of N > 1 constituents. That is, the state x € X is
given by the N coordinates x = (xq,...,xy); X = X1 x Xp... x Xy, where X; = X,
for all i, 1 <i < N (X, is the one-constituent space). Let uy be the product measure
X, X px, .. X pxy,where uyx;, = p1x,, is the measure on X,,.. Suppose that an observable
k is defined on the one-particle space X, and takes the values k1, ..., xx with equal prob-
ability 1/k, k < N.'> Suppose that the macro-variable K is the sum of the one-component
observable, i.e. K(x) = ZIN:I K(x;). Then the value corresponding to the largest macro-
region as well as the value obtained by phase space averaging is %(m + K2+ ... KN).

13Such micro-state corresponds to the smallest possible departure from the macro-state with zero
energy because the number of downward pointing arrows is the same for all rows. From this, then
follows that there has to be a perturbation in each row and that ~/N has to be the second lowest
value of the internal energy (Lavis and Bell 1999).
4Further examples where the Gibbsian phase average and the Boltzmannian equilibrium value
come apart can be found in our (2017b and 2020).

31t is assumed that N ia a multiple of k, i.e. N = k s for some s € N.
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This theorem applies to the KAC-ring and the other examples (baker’s system, ideal
gas) mentioned above as cases where the Boltzmannian equilibrium value agrees with
the Gibbsian phase average but where the Ehrenfest-Afanassjewa condition does not
apply. Hence, it explains in these cases why the Boltzmannian equilibrium value and
the Gibbsian phase average coincide. As it should be, the theorem does not apply to
the six vertex model with the energy macro-variable because conditions (i) and (iii)
are not satisfied (the measure is not the product measure of the one-constituent space,
and the macro-variable considered is not the sum of a one-constituent observable,
taking values with equal probability).

Note that the conditions of the Average Equivalence Theorem are not necessary
for Boltzmannian equilibrium values and Gibbsian phase averages to coincide. In
particular, that the macro-variable is a sum of the variables on the one-component
space, that the macro-variable on the one-component space corresponds to a partition
into cells of equal probability, or that the measure on state space is the product measure
of the measure on the one-component space are strong conditions that are often not
satisfied. This is illustrated by our example of the dilute gas with the macro-variables
we discussed above. As we have seen, this example is an instance of the Ehrenfest-
Afanassjewa condition. However, it is not an instance of the AET. More specifically,
it is not the case that all sums of possible values of the one-component variable are
possible values of the macro-variable f (because of the requirement that the total
energy is constant, only certain sums of values of the one-component variable are
possible macro-values). Hence the condition that the macro-variable K is the sum of
the one-component variable where all sums of possible values of the one-component
variable are possible values of the macro-variable is violated.

To conclude, the Ehrenfest-Afanassjewa condition instead and the Khinchin con-
dition and the conditions of the AET provide sufficient but not necessary conditions.
So they just identify two cases where the Boltzmannian equilibrium values and Gibb-
sian phase averages agree. We suspect that there will be other conditions where the
Boltzmannian equilibrium values and Gibbsian phase averages agree.

4.8 Conclusion

We have considered Ehrenfest and Ehrenfest-Afanassjewa’s argument for the con-
clusion that Boltzmannian equilibrium values and Gibbsian phase averages agree.
We pointed out that their argument is true only under special circumstances. This
is not a shortcoming of their proof but an inherent limitation of the claim: it is not
generally the case that Boltzmannian equilibrium values and Gibbsian phase aver-
ages agree. We discussed the example of the six-vertex model and showed that in
that model the two values come apart. We then offered a general theorem providing
conditions for the equivalence of Boltzmannian equilibrium values and Gibbsian
phase averages. The conditions of the theorem are sufficient but not necessary. This
raises the important question under what other conditions Boltzmannian equilibrium
values and Gibbsian phase averages agree.
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Chapter 5 ®)
Ehrenfest and Ehrenfest-Afanassjewa oo
on the Ergodic Hypothesis

Patricia Palacios

Abstract Ehrenfest and Ehrenfest-Afanassjewa’s seminal article on statistical
mechanics highlighted a crucial assumption at the heart of Boltzmann’s statistical
mechanics: the ergodic hypothesis. The importance of this article for transmitting
the problems related with the ergodic hypothesis has been widely recognized, but
Ehrenfest and Ehrenfest-Afanassjewa have been strongly criticized for not having
provided a fair account of Boltzmann’s statistical mechanics. In this chapter, I out-
line Ehrenfest and Ehrenfest-Afanassjewa’s treatment of the ergodic hypothesis and
I evaluate the role of this discussion for the development of the ergodic theory in the
20th century. I will conclude that the major contribution of Ehrenfest and Ehrenfest-
Afanassjewa comes precisely from what has been regarded by some historians of
science as historical inaccuracies of the article.

5.1 Introduction

In the Conceptual Foundations of the Statistical Approach to Mechanics (Ehren-
fest and Ehrenfest-Afanassjewa 1959)—also known as the “Encyklopidie article”—
Ehrenfest and Ehrenfest-Afanassjewa gave a prominent role to what they dubbed as
“the ergodic hypothesis”, suggesting that Boltzmann’s entire program lacks a firm
foundation because it relies on this hypothesis of questionable validity. The impor-
tance of Ehrenfest and Ehrenfest-Afanassjewa’s article for transmitting the problems
related with the ergodic hypothesis has been widely recognized, but they have been
strongly criticized for not having provided a fair account of Boltzmann’s statistical
mechanics. It has been argued that they exaggerated the role of the ergodic hypothesis
in Boltzmann’s program (Brush 1967, 1971; von Plato 1991); that they exaggerated
the importance of the equivalence between phase averages and time averages (Brush
1967; Uffink 2007); and that they misunderstood the meaning of the ergodic hypoth-
esis as conceived by Boltzmann (von Plato 1991; Brush 1967). In this chapter, I will
analyze the discussion of Ehrenfest and Ehrenfest-Afanassjewa around the ergodic
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hypothesis and I will evaluate the role of this discussion for the development of the
ergodic theory in the twentieth century. I will conclude that the major contribution
of the Encyklopddie article comes precisely from what has been regarded by some
historians of science as historical inaccuracies of the article. In particular, I will argue
that they advanced Boltzmann’s interpretation of probabilities as time averages by
emphasizing the role of the ergodic hypothesis and by highlighting the importance
of the equivalence between phase and time averages.

This chapter is organized as follows. In Sect.5.2, I review the origins of the
ergodic hypothesis in Boltzmann’s statistical mechanics, by highlighting the con-
nection between the ergodic hypothesis and Boltzmann’s time average interpretation
of probabilities. In Sect.5.3, I discuss Ehrenfest and Ehrenfest-Afanassjewa’s criti-
cism of the ergodic hypothesis and I point out that one of their major contributions
was to pose a new puzzle in the foundations of statistical mechanics, which I call
“the Ehrenfest and Ehrenfest-Afanassjewa’s puzzle”. Subsequently, in Sect.5.4, 1
illustrate how this puzzle encouraged the development of the impossibility theorems
in 1913. In Sect. 5.5, I argue that this puzzle also played a role in the introduction of
the notion of metric transitivity, which led to the establishment of the ergodic theo-
rems by Birkhoff and von Neumann. I point out that although these theorems solved
the Ehrenfest and Ehrenfest-Afanassjewa’s puzzle, they transformed the problem of
ergodicity into the problem of proving that the systems of interest are metrically
transitive. Finally, in Sect.5.6, I review the recent discussion in the foundations of
statistical mechanics around the problem of metric transitivity.

5.2 The Origin of the Ergodic Hypothesis

Consider a typical situation of a dilute gas enclosed in a finite container with N iden-
tical polyatomic molecules, each with r degrees of freedom. The molecules collide
with each other and with the walls of the container and the collisions are governed
by short-range repelling potentials. The possible states of this system are represented
by points in a 2rN-dimensional phase space I', with g position coordinates and p
momentum coordinates. Assume that the energy of the system is E, so that the state
must lie on the energy surface I'g, which is 2r N — 1 dimensional. At time ¢, the
state of the system will be determined exactly by the simultaneous position and
momentum coordinates of the N molecules:

1 1. 2 2, . N N
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The corresponding changes in the states of the gas model are expressed, following
Ehrenfest and Ehrenfest-Afanassjewa (1959)’s notation, by the following Hamilto-
nian equations of motion:

dgk  SE dpk _8E

dr  §pk dr Sqk”

s s

One can easily observe that the number of variables is enormous, so even if the
system is deterministic, it is not possible to know the exact initial conditions of
the system and there is little chance of integrating these equations to find the exact
solutions. Such pragmatic difficulties motivated a statistical approach to the study
of these kinds of systems, which began with Maxwell and Boltzmann in the second
half of the ninteenth century.

Maxwell (1860) was the first to characterize the equilibrium state of a gas by a
probability distribution function f. Almost a decade later, Boltzmann (1868) derived
this probability distribution in the presence of external forces suggesting that if the
system is left alone, the probability of the molecular velocities will always assume
Maxwellian distribution." To derive this result he uses, for the very first time, a
time average interpretation of these probabilities, whereby the probability of the
equilibrium state is identified as the relative time in which the system is in that state
when left alone for “a very long time”. In a short communication about Maxwell’s
work in 1879, he refers to his own interpretation of probabilities in the following
terms:

There is a difference in the conceptions of Maxwell and Boltzmann in that the latter char-
acterizes the probability of a state by the average time in which the system is in this state,
whereas the former assumes an infinity of equal systems with all possible initial states.
(quoted in von Plato 1991, p. 71)

But what exactly is a time average and how does it help interpret probabilities in
statistical mechanics? Let us recall that Boltzmann (1868) had adopted Maxwell’s
characterization of equilibrium in terms of stationary probability distributions, where
macroscopic observables correspond to phase averages over the phase space with
respect to a specific probability measure, i.e., the microcanonical measure. In a
modernized notation, this can be written as follows:

()= fpdr, (.1

e

where f(x) is the phase function that gives the value of the observable for each
microscopic state in the phase space, p(x) is the probability distribution density, and
x represents the state of the system written in local coordinates. Since this average
is independent of the dynamics of the system there is no immediate interpretation

! Boltzmann noted that there might be exceptions to his derivation, for example, when the trajectory
is periodic. However, he believed that such behavior would be destroyed by the slightest disturbances
from outside (Utfink 2007, p. 39).
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for this probability, in other words it is not clear why an arbitrarily chosen system
should have this distribution. In order to establish a connection with the dynamics of
the system that is robust upon the initial conditions, Boltzmann postulated that the
probabilities are time averages.” In modern terms, this can be defined as follows. Let
T (¢, x) represent the dynamical evolution of the system, if x is the state at time O,
then the future state at time ¢ is T (¢, x). The time average of a function of state f is

[ =limo(1/1) /l f(T(z, x))dr. (5.2)
0

Although Boltzmann did not attempt to demonstrate the equivalence between
phase averages and time averages (we will come back to this point in the next section),
he did explicitly use time averages to derive the Maxwellian distribution (Brush
1967; Uffink 2007; von Plato 1991). The main strength of Boltzmann’s result is its
generality, indeed it is robust upon any particular assumption about collisions or any
other detail of the mechanical model involved, with the only requirement that the
system must obey the constancy of total energy. The main weakness of this result
is that it depends on what Ehrenfest and Ehrenfest- Afanassjewa (1959) baptized as
the ergodic hypothesis, i.e., the assumption that the trajectory of the system will
eventually pass through all points of the phase space.> As Maxwell (1879, p. 713)
puts it:

The only assumption which is necessary for the direct proof [of the distribution law of

energy] is that the system, if left to itself in its actual state of motion, will, sooner or later,
pass through every phase which is consistent with the equation of energy.

Boltzmann (1868) was not unaware of the importance of this assumption for
his derivation and argues: “If all initial states lead to periodic motions not running
through all possible states compatible with the total energy, there would be an infinity
of different possible temperature equilibria” [p. 96]. Furthermore, he was not unaware
of the controversial character of this assumption. In fact, he recognized the possibility
of the existence of periodic motions that fail to be ergodic. However, by studying

2This use of time averages for interpreting the expectation values w.r.t the Maxwellian stationary
probability distribution should be distinguished from the related use of time averages to explain the
empirical success of the microcanonical ensemble, which leads to the further problem of explaining
that time averages are equal to the results of a macroscopic measurement. The latter is usually
justified by assuming that measurements take an amount of time that is long compared to micro-
scopic relaxation times. Since this chapter focuses on the contribution of Ehrenfest and Ehrenfest-
Afanassjewa on the ergodic hypothesis, I will mostly refer to the use of time averages in the inter-
pretation of probabilities and not to the explanation of the success of the microcanonical ensemble.
For an analysis of this second problem, see e.g., van Lith (2001), Uffnk (2007), Palacios (2018).

3The name “ergodic hypothesis” was coined by Ehrenfest and Ehrenfest-Afanassjewa (1959). In
fact, Boltzmann introduced the word Ergode only in 1884 to denote an ensemble of systems with
a certain probability distribution in phase space. This use of the word “ergodic” by Ehrenfest and
Ehrenfest-Afanassjewa has led to some controversy among commentators. For Brush (1967, p.
169), Ehrenfest and Ehrenfest-Afanassjewa gave an entire different meaning to ergodicity than the
one given by Boltzmann. For Uffink (2007, p. 39) instead, they were justified in using the term
“ergodic” to denote this hypothesis (see further discussion in Sect.5.3).
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the behavior of so-called Lissajous figures, he observed that small irregularities
would destroy this regular behavior obliging the system to pass through every phase
consistent with the equation of energy. He then justifies the ergodic hypothesis more
generally by appealing to irregular distortions of external forces or surrounding gas
molecules:
The great irregularity of thermal motion and the manifold forces affecting bodies from the
outside make it probable that the atoms of the warm body, through the motion we call heat,
run through all the positions and velocities compatible with the equation of kinetic energy, so

that we can use the equations developed above on the coordinates and component velocities
of the atoms of warm bodies. Boltzmann (1871, p. 679)

It is useful to illustrate this idea with a simple example. Consider a case of a
hard-sphere system in a box where every particle moves on the same straight line
being reflected at each end from a perfectly smooth parallel wall. Such systems
would remain on a region of the phase space without visiting the entire phase space.
However, those systems would be extremely unlikely since the slightest perturbation
would destroy the perfect alignment.

In spite of this, Boltzmann recognized the hypothetical character of this justifica-
tion and remained skeptic about the validity of this hypothesis. This is clear by the
fact that in later works (e.g., Boltzmann 1877) he attempted to characterized thermal
equilibrium differently making explicit that these alternative approaches avoid the
hypothesis of ergodicity (See also Uffink 2007, p. 42]).

5.3 Ehrenfest and Ehrenfest-Afanassjewa’s Critique of the
Ergodic Hypothesis

In their Encyklopddie article, Paul Ehrenfest and Tatiana Ehrenfest-Afanassjewa
(1959) wrote an extensive and influential critique of Boltzmann’s statistical mechan-
ics accusing this approach of relying on what they regarded as a doubtful hypothesis,
i.e., the ergodic hypothesis.
The fundamental assumption underlying [Boltzmann’s] investigation is the hypothesis that
the gas models are ergodic systems [...]. With the help of this hypothesis Boltzmann computed

the time average of, for instance, the kinetic energy of each atom (the same value is obtained
for all atoms!). (Ehrenfest and Ehrenfest-Afanassjewa, 1959, p. 24)

However, the existence of ergodic systems (i.e., the consistency of their definition) is doubt-
ful. So far, not even one example is known of a mechanical system for which the single G-path
approaches arbitrarily closely each point of the corresponding energy surface. Moreover, no
example is known where the single path actually traverses all points of the corresponding
energy surface (Ibid, p. 22).4

However, the emphasis in the doubtful character of what they called “the ergodic
hypothesis” was not the main contribution of the Encyklopddie article. As mentioned

“They define a single G-path as the trajectory of the moving image point corresponding to the phase
changes of a gas model (Ehrenfest and Ehrenfest-Afanassjewa 1959, footnote 73).
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above, Boltzmann (1871) had already recognized the controversial character of this
assumption. The main contribution of the Encyklopddie article, as I see it, comes
precisely from what has been regarded by some historians of science as historical
inaccuracies of the article (Brush 1967, 1971; von Plato 1991). In particular, that
they exaggerated the role that ergodicity played in Boltzmann’s statistical mechanics
and that they attributed to Boltzmann an assumption that he probably never believed
in. I will argue next that these aspects, which go beyond Boltzmann’s investigations,
are precisely the ones that really advanced the development of the ergodic theory in
the twentieth century.

Although there is no consensus among modern commentators about the role and
status of the ergodic hypothesis in Boltzmann’s approach, most of them agree that
the ergodic hypothesis was a justification for the time average interpretation of prob-
abilities (von Plato 1991; Uffink 2007; Brush 1967). Based on what has been said in
the previous section, a straightforward way of giving a time average interpretation
of probabilities is by equating time averages f* and phase averages (f):

f f(X)p(x)dX=lim,_>oo(1/t)f F(T(, x))dt (5.3)
g 0

However, as modern commentators have pointed out (von Plato 1991; Uffink
2007), this particular motivation for assuming ergodicity is not to be found any-
where in Boltzmann’s writings and seemed to have been introduced for the first time
by Ehrenfest and Ehrenfest-Afanassjewa in their review of Boltzmann’s statistical
mechanics. von Plato (1991, p. 78) expresses this as follows:

This simplified reading of Boltzmann is due to the review in 1911 of foundations of statistical
mechanics by Paul and Tatiana Ehrenfest. They called the above justification for assuming
a single trajectory [the equivalence between phase and time averages] the “Boltzmann-
Maxwell justification”, and it has since then been accepted as standard. But that particular
motivation for assuming ergodicity is not used by Boltzmann.

Similarly, Uffink (2007, p. 42) claims:

There is however no evidence that Boltzmann ever followed this line of reasoning neither
in the 1870s, nor later. He simply never gave any justification for equating time and particle
averages, or phase averages, at all. Presumably, he thought nothing much depended on this
issue and that it was a matter of taste.

Now since Boltzmann attributes himself a time average interpretation of proba-
bilities, one may wonder why he did not explicitly attempt to equate phase and time
averages. One can speculate that since he was aware of the possibility of periodic
motions, he did not believe that this equivalence holds exactly (von Plato, 1991,
p. 78). One can also believe, as Uffink (2007) does, that for him nothing much
depended on this equivalence. If this latter interpretation is correct, then one should
give Ehrenfest and Ehrenfest-Afanassjewa all the credit for having emphasized the
important role of this equivalence for a time average interpretation of probabilities.
Indeed, for them this equivalence was not just “a matter of taste” but the only way
of warranting the uniqueness of the stationary probability distribution, which means
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that all motions associated with the same total energy yield the same value for the
time average of any function (Ehrenfest and Ehrenfest-Afanassjewa, 1959, p. 22).
Their reasoning can be summarized as follows. If one identifies the ergodic hypoth-
esis as the assumption that if a system that is left to itself will pass through all the
phase points compatible with its total energy. Then, given that a point in phase space
cannot lie on more than one trajectory, all systems with the same value of the total
energy will follow the same trajectory and their averages over infinite time intervals
will be equal. The equivalence between phase and time averages gives in this way
a neat interpretation of probabilities in equilibrium statistical mechanics and a clear
connection to the dynamics of the system that does not depend on the initial con-
ditions. Another significant advantage of equating time and phase averages is that
phase averages can be calculated in many cases, whereas the time averages cannot
(Moore 2015). The problem, as Ehrenfest and Ehrenfest-Afanassjewa stated it, is
that this equivalence seems to rely crucially on the ergodic hypothesis, which they
intuitively believed was not only doubtful but mathematically impossible, but more
on this later.

From what has been said here, one can see that the Encyklopddie article, perhaps
by exaggerating the role that ergodicity played in Boltzmann’s approach advanced
a time average interpretation of probabilities and prompted at least three important
challenges that were later conceived as “the ergodic problem”. The first challenge
was to demonstrate that the limit involved in the definition of time averages f* exists.
The second challenge was to prove that this limit is independent of x and equal to
the phase average. The third challenge was to determine the validity of the ergodic
assumption or any analogous assumption required to derive this equivalence. As it
will be seen later, the first two problems had to await the ergodic theorems of 1931
and 1932 and the new concept of metric transitivity (that replaced ergodicity) to
be given a definite solution (See Sect.5.5).° The third problem does not have an
unequivocal answer yet, but the impossibility theorems of 1913 demonstrated that at
least the strict ergodic hypothesis was not a valid assumption (See Sect.5.4).

Another aspect of the Encyklopddie article that has been regarded as a historical
error concerns the definition of the ergodic hypothesis (Brush 1967). It is important
to note that Boltzmann never (at least not explicitly) associated what Ehrenfest and
Ehrenfest-Afanassjewa defined as ergodic hypothesis with the word Ergode, which
was actually introduced only in Boltzmann (1884), and was used to denote a station-
ary ensemble (i.e., the microcanonical ensemble) with only one integral of motion,
its total energy. However, Boltzmann (1884) did assume that every element of such
an ensemble traverses every phase point with the given energy. According to Uffink
(2007, Footnote 20) this would have justified Ehrenfest and Ehrenfest-Afanassjewa
in using this term in their formulation of the hypothesis. But beyond the discussion
of whether or not the “ergodic hypothesis” should receive that name, Ehrenfest and
Ehrenfest-Afanassjewa have been strongly criticized for attributing to Boltzmann

SPhysicists frequently identify the term “ergodicity” with “metric transitivity””, however, I will argue
below that these are two well-defined different concepts that should not be confused.
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an hypothesis that he probably never believed in. More to the point, Ehrenfest and
Ehrenfest-Afanassjewa defined the ergodic hypothesis as follows:

Definition 5.1 Ergodic hypothesis The single, undisturbed motion of the system,
if pursued without limit in time, will finally traverse “every phase point” which is
compatible with its given energy. (Ehrenfest and Ehrenfest-Afanassjewa, 1959, p.
21)

For Brush (1967) and von Plato (1991), this definition is misleading for at least two
reasons. First, because it refers to one single trajectory instead of an ensemble in
which there is a continuous number of different trajectories. Second, because it uses
the terms “every phase point”, which is something that most probably Boltzmann
never believed in. Regarding the first point, it is true that Boltzmann introduced the
word Ergode to denote ensembles instead of single trajectories. However, Boltzmann
did not introduce the notion of ensemble until 1884, whereas the hypothesis that the
system will pass through “every phase” consistent with its given energy was used
much earlier. For instance, in 1871 he explicitly refers to the motion of a point-mass
in a plane under the influence of an attractive force. He says that if the force is
described by a potential function 1/2(ax? + by?) (the compound harmonic motion
which results in the so-called Lissajous figures) and the ratio of the periods of the
two motions is irrational, then the point-mass goes through all possible positions
within a certain rectangle (Brush (1967), p. 169). Therefore, the formulation of
Boltzmann’s hypothesis in terms of single trajectories seems to reflect at least the
first uses of this hypothesis by Boltzmann. One should also note that Ehrenfest and
Ehrenfest-Afanassjewa had a further reason to formulate this hypothesis in terms
of single trajectories, since, as mentioned above, by the uniqueness of mechanical
trajectories, there would be essentially one trajectory, so that one can replace a long
trajectory of a single system by an average over all points on the energy surface.

The second objection to Ehrenfest and Ehrenfest-Afanassjewa’s formulation of
the ergodic hypothesis was that it is stronger than the hypothesis that Boltzmann
probably had in mind. Although Boltzmann explicitly used the terms “through every
point”, Brush (1967) pointed out that what he probably meant was something close to
what Ehrenfest and Ehrenfest- Afanassjewa termed as the “quasi-ergodic’ hypothesis,
which they define as follows (footnote 98):

Definition 5.2 Quasi-Ergodic hypothesis The single, undisturbed motion of the sys-
tem, if pursued without limit in time, will approach “arbitrarily closely each point”
which is compatible with its given energy, which means that the trajectory is dense.

The reason that Brush (1967) and other historians of science (e.g., Borel 1915; von
Plato 1991) offer for concluding that Boltzmann interpreted “the ergodic hypothesis”
in the sense of the “quasi-ergodic hypothesis™ is that in some passages, he actually
added the qualification “approximation” to the description of ergodic behavior with-
out pointing out a distinction between these behaviors and what we could under-
stand as strict ergodic behaviors. For example, in a discussion of Kelvin’s test-cases
in 1892 he claims: “all possible sets of values of x, y, and 6 which are consistent
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with the equation of vis viva are obtained with any required degree of approxima-
tion [mit beliebiger Annherung erreicht werden]” (quoted in Brush (1967), p. 173).
They suppose then that the use of the terms “through every point” were just used
by Boltzmann as an approximation of trajectories going “arbitrarily close to every
point” (Brush (1967), p. 174). We could express this idea in terms of contemporary
philosophy of science and say that Boltzmann believed strict ergodic trajectories to
be a straightforward idealization of the trajectories going arbitrarily close to every
point, i.e., an idealization that constitutes an approximation of realistic behavior and
that can therefore be de-idealized without loosing explanatory power (See Butterfield
(2011)).

If the previous interpretation is correct, then it seems then that Ehrenfest and
Ehrenfest-Afanassjewa were wrong in taking the idea of trajectories going literally
“through every point” in Boltzmann’s writings too seriously, after all Boltzmann just
meant trajectories going “arbitrarily close to every point” (Borel 1915; von Plato
1991; Brush 1967). However, this aspect, which appears to be a historical miscon-
ception of the Encyklopddie article and the result of “some careless statements made
by the Ehrenfests” (Brush 1967, p. 169), is at the same time one of the main contribu-
tions of the article about the ergodic hypothesis. As I see it, Ehrenfest and Ehrenfest-
Afanassjewa advanced Boltzmann’s ideas by pointing out that the difference between
“ergodic behavior” and “quasi-ergodic behavior” is mathematically essential, which
implies that the ergodic hypothesis cannot be de-idealized and replaced by the quasi-
ergodic hypothesis without loosing explanatory power. In footnote (98) they illustrate
this essential difference between “ergodic” and “quasi-ergodic” behavior by help of
the following example. Consider a geodesic line of a torus for which the ratio of the
two numbers of turnings in the two directions is irrational. Such a geodesic intersects
the meridian at infinitely many points P, which are densely distributed everywhere
over the circumference. No matter how many times one turns around the torus along
the geodesic line, one will never get from a point P, to the diametrically opposite
point O on the meridian. This is because if that were the case, then twice the same
number of revolutions would bring us back to P, and the system would stay in a
particular region of the phase space, thus failing to describe a dense trajectory. This
means that the points that can be visited by a dense trajectory constitute a subset
of all points of the phase space. “From this one can easily see that the set of all
those points P, which can be reached by a given geodesic line form a denumerable
subset in the continuum of all those points on the circumference which the geodesic
line approaches arbitrarily closely” (Ehrenfest and Ehrenfest-Afanassjewa, 1959,
Footnote 98). Here Ehrefest and Ehrenfest-Afanassjewa were not only pointing out
an essential difference between “ergodic” and “quasi-ergodic” trajectories, but also
suggesting that the notion of strict ergodic behavior was not consistent and therefore
mathematically impossible (See Sect.5.4).

But there was a further and more important reason to distinguish between
“ergodic” and “quasi-ergodic” behavior, namely, that they suspected that quasi-
ergodic behavior does not entail the desired conclusion that Maxwell’s distribution
is the only stationary distribution over the energy surface and therefore that it does
not warrant the equivalence between phase and time averages: “[W]e must say that
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for a “quasi-ergodic” system on each surface E(q, p) there will be a continuum
of co®N=2) different G-paths with different values of the constants cy, ..., ¢, -
Hence one cannot extend the Boltzmann-Maxwell justification [...] to quasi-ergodic
systems” (footnote 99). “The time average in question can change quite discontinu-
ously from path to path for a quasi-ergodic system, because we obtain it by averaging
over an infinite time interval” (footnote 102).

Although they did not offer a careful proof of the previous statements, their dis-
tinction between ergodic and quasi-ergodic hypothesis suggests that the ergodic
hypothesis corresponds to what in the contemporary philosophy of science (Fletcher
etal. 2019) is called an “essential idealization”, i.e., an idealization that cannot be de-
idealized without loosing explanatory power. In this case, the idealized assumption
was the ergodic hypothesis, which Ehrenfest and Ehrenfest-Afanassjewa suggested
cannot be de-idealized by the weaker and more plausible “quasi-ergodic hypothesis”.
The latter ideas led them to the following puzzle:

Ehrenfest and Ehrenfest-Afanassjewa’s puzzle: On the one hand, by assuming ergodicity,
one can demonstrate the equivalence between phase and time averages. Yet the existence of
ergodic systems is doubtful. On the other hand, if one de-idealizes this assumption by the
weaker hypothesis of quasi-ergodicity, which is probably true for some systems, one does
not obtain the desired equivalence.

This clear way of presenting the issues surrounding the ergodicity assumption is
in my view the second major contribution of the Encyklopddie article on this topic,
apart from the above-mentioned emphasis on the equivalence between time and
phase averages. We will see in the next sections that in order to solve the Ehrenfest
and Ehrenfest-Afanassjewa’s puzzle, one needs to introduce elements of modern
topology and the new notion of metric transitivity, which, as I will argue below,
corresponds neither to the ergodic hypothesis nor to the quasi-ergodic hypothesis.

5.4 Proof of the Impossibility of Ergodic Systems

We have seen above that the Encyklopddie article not only raised suspicion on the
actual existence of ergodic systems but also on the mathematical possibility of ergodic
systems. The challenge was therefore not only for physicists, who were asked to jus-
tify the validity of this assumption but also for mathematicians, who were now chal-
lenged to demonstrate that ergodic systems cannot exist in principle. Mathematicians
Arthur Rosenthal and Michel Plancherel accepted the challenge and independently
demonstrated in 1913, soon after the publication of the Encyklopddie article, that
Ehrenfest and Ehrenfest-Afanassjewa’s intuition was correct and that a mechanical
system represented by a phase space with more than one dimension cannot pass
through every point on the energy surface. Rosenthal (1913) explicitly recognizes
the direct influence of Ehrenfest and Ehrenfest-Afanassjewa in his “Proof of the
impossibility of ergodic gas” and begins his article by saying: “In view of the fact
that no example of such an ergodic system has been demonstrated with certainty
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P. and T. Ehrenfest doubted the existence of ergodic systems (i.e., they doubted that
their definition is not contradictory). In the following it will be shown that this doubt
was correct; i.e., it will be shown that not only no gas is an ergodic system, but also
that in general such systems cannot exist.” (p. 796)

In order to understand the proofs offered by Rosenthal (1913) and Plancherel
(1913), it is necessary to review some of the results obtained in pure mathematics
during the second half of the nineteenth century, in which these proofs were based.
The ergodic hypothesis, as formulated by Ehrenfest and Ehrenfest-Afanassjewa,
implies that a certain curve, which can be placed in correspondence with a straight
line (the time axis), eventually visits all points of the phase space. This means that
such a curve would appear one dimensional from the time axis point of view and
multidimensional from the phase space point of view, if the phase space has more
than one dimension. This obliged to introduce a method for comparing the sizes
of infinite classes of different dimensionalities. Cantor, who developed his work on
set theory during 1871 and 1897, furnished such a method by using the criterion of
one-to-one correspondence. The consequence of Cantor’s theory that was relevant
for the understanding of ergodicity was the proof that any n-dimensional manifold
can be put into one-to-one correspondence with any m-dimensional manifold, where
n and m may have different dimensionalities (Cantor 1878).° However, this proof
lacks the property of continuity, which means that points that are close together in
the n-dimensional manifold may be mapped into points that are far apart in the m-
dimensional manifold. Cantor suspected then that bicontinuous one-to-one mapping
may serve as a criterion for proving that two sets have the same dimensionality, which
was finally demonstrated by Brouwer (1911).

Other developments needed to establish the impossibility of ergodic systems in
1913 were the results offer by Borel (1898) and Lebesgue (1902), who completed
Cantor’s method for comparing infinite sets of points by providing a method for
determining the length, area, volume, and more generally, the “measure” of sets of
points. In these approaches, the measure of a point is defined to be zero whereas
the measure of all real numbers in a finite interval is defined as the length of that
interval. Based on these results, Plancherel (1913) and Rosenthal (1913) published
their celebrated proofs. Without going into technical details, Rosenthal (1913)’s proof
can be summarized as follows. Consider a gas system of N particles and r degrees of
freedom, where all states of the system are represented by a 2r N -dimensional phase
space I'. One can choose a small region G of the energy surface I'g in which all
the partial derivatives of the energy with respect to the coordinates and momenta are
continuous functions of the coordinates and momenta, such that at least one of these
derivatives is different from zero everywhere in that region. One can then map this
region G into a 2r N — 1-dimensional cube. According to the ergodic hypothesis,
the representative point of the system must pass through every point in that region
G. This can happen in two ways: (i) In a finite time interval (one-dimensional time
axis), the representative point enters G, visits all points, and comes out again, which
means that the 2r N — 1-dimensional region G should be mapped onto a line of

6See Brush (1967) for a historical review of these results.



112 P. Palacios

finite length, continuously and one-to-one. (ii) Or the representative point passes
into and out of G infinitely many times. Rosenthal’s proof shows that neither of
these alternatives is possible, except in the trivial case when the phase space is one
dimensional. For both alternatives imply that there is a bicontinuous one-to-one
mapping in sets of different dimensionalities, which according to Brouwer’s proof is
impossible. Plancherel’s proof follows a similar reasoning but using Lebesgue theory
of measure. In particular, the proof is based on the result that the time axis, a line, is
a set of measure zero with respect to a region of two or more dimensions.”

These proofs demonstrated that the first part of what has been called here “Ehren-
fest and Ehrenfest-Afanassjewa’s puzzle” was correct: a mechanical system cannot
be ergodic, except in cases when the phase space is one dimensional. It remained to
be demonstrated the truth of the second part of this puzzle, namely, that the weaker
“quasi-ergodic” hypothesis was not sufficient to derive the equivalence between time
and phase averages. An indirect proof of this statement had to await the establishment
of the ergodic theorems of Birkhoff (1931) and von Neumann (1932), which stated
the necessary and sufficient conditions for the equivalence between time and phase
averages. We review these results in the following section.

5.5 The Ergodic Theorems and the Notion of Metric
Transitivity

In the 1930s, Birkhoff (1931) and John von Neumann (1932) published two separated
papers containing different versions of what is now known as “the ergodic theorem”.
This theorem provided a key insight into the problem presented in a clear way for
the first time by Ehrenfest and Ehrenfest-Afanassjewa, namely, the justification of
the hypothesis that time averages equal phase averages. At the same time, it initiated
an entire new field of mathematical research called ergodic theory, which has thrived
more than 80 years.?

The basic concept that allowed von Neumann and Birkhoff to arrive at the cele-
brated result was the notion of “metric transitivity”, introduced for the first time by
Birkhoff and Smith (1928). In order to understand these results and the notion of
metric transitivity, one needs to become familiarized with elements of measure the-
ory. Let (X, ¢, 1) be a dynamical system given by a metric space (phase space) X,
a continuous map ¢ : X — X, and equipped with a normalized Lebesgue-measure
w (.e., u = 1) restricted to X. A point x € X, which represents a particular state of
the system, “moves” in time, generating a “flow” that we denote as ¢, (x). ¢;(x) is
the position to which the system moves after time ¢ so that ¢, (x) is the solution of the
differential equation with initial value x at time # = 0. One should also add that ¢, (x)
is ahomeomorphism of X onto itself, which satisfies the group property ¢;¢s = ¢;+s.

7See Brush (1967) for more details about this proof.
8See Mackey (1974) for an excellent historical review of the ergodic theory.
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It also preserves the Liouville measure p. The notion of “metric transitivity”, which
replaced the old notion of “ergodicity” introduced by Boltzmann (1868), was then
defined as follows:

Definition 5.3 Metric transitivity The dynamical system (X, ¢;, n) is metrically
transitive iff for any measurable set of nonzero measure V and for almost every
point x € X it holds that {¢,;(x)} NV # @ for some time ¢.

This means that eventually almost every point x € X (i.e., all points except for a set
of measure 0) visits every measurable set V in X. If a dynamical system is metrically
transitive, it follows that it cannot be decomposed into two (or more) invariant regions
of nonzero measure.

By using this notion of metric transitivity, the theorems of Birkhoff (1931) and
von Neumann (1932) established that the time limit # — oo used in the following
definition of time averages f™* exists for almost all x and is independent of X when
1t exists:

r* =limt—>oo(1/t)/0 S (@i (x))dt, (5.4

where f is an integrable function on the phase space X, representing a physical
measurement on a system that is in state x € X.°

In short, they demonstrated that the following theorem (the Ergodic Theorem)
holds:

Theorem 5.1 Ergodic Theorem If the dynamical system (X, ¢;, 1) is metrically
transitive, then the limit of f* exists and coincides with the phase average (f) =
[x f(x)du(x), for almost all x € X.

The proof of Theorem 5.1 constituted the first crucial step toward the solution
of the long-standing problem of the equivalence between phase and time averages
posed in a clear way by Ehrenfest and Ehrenfest-Afanassjewa. However, as one
can observe, this theorem depends essentially on the assumption that systems are
“metrically transitive”, an assumption that is not quite easy to justify. In this sense,
one can say that the ergodic theorem transformed the question of equivalence between
time and phase averages into the question of whether the flow ¢ representing the time
evolution of the system is metrically transitive. I will return to this problem in the
next section, but first I will put these results in the context of the previous discussion
around the ergodic hypothesis.

In Sect. 5.3, we said that Ehrenfest and Ehrenfest-Afanassjewa posed the following
puzzle: On the one hand, if we assume ergodicity, then one can derive the equiva-
lence between time averages and phase averages. However, real systems cannot be
ergodic. On the other hand, if we assume the weaker hypothesis of quasi-ergodicity,

von Neumann (1932) demonstrated that the functions of x on the time average converge and

Birkhoff (1931) proved further that this convergence was pointwise almost everywhere. See Moore
(2015) for more details on the difference between von Neumann and Birkhoff’s results.
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which may be true of some systems, then one cannot derive the equivalence between
phase and time averages. In Sect.5.4, we saw that the first part of this puzzle was
correct, indeed Rosenthal (1913) and Plancherel (1913) demonstrated that real sys-
tems represented by a phase space with more than one dimension cannot be ergodic.
This naturally raises the question of whether metric transitivity is equivalent to the
original ergodic hypothesis. If they were equivalent, then Theorem 5.1 would loose
interest, since it would not be applicable to almost any real system of interest. Fortu-
nately, the notion of metric transitivity has been proven to be weaker than the original
ergodic hypothesis and therefore immune to the impossibility proofs of ergodic sys-
tems elaborated by Rosenthal and Plancherel (2015). The key aspect that weakens the
definition of metric transitivity is the introduction of the expression “for almost every
x” in the definition of metric transitivity, which means for all x except for a set of
measure zero.'? Furstenberg (1961) demonstrated by considering an r-dimensional
torus that convergence “almost everywhere” can be replaced by “convergence every-
where” only in cases of r = 1, which is consistent with Rosenthal and Plancherel’s
results. In all other cases, i.e, for r > 1, one needs to impose further restrictions on
the transformation ¢.

Another question that arises in light of the Ehrenfest and Ehrenfest-Afanassjewa’s
puzzle is whether the notion of metric transitivity corresponds to what they dubbed
as the “quasi-ergodic” hypothesis. If this were the case, then the second part of the
puzzle would have been proven to be false, since “quasi-ergodicity” would have been
demonstrated to be sufficient for the equivalence between phase and time averages.
Interestingly, although metric transitivity is frequently taken as equivalent to the
quasi-ergodic hypothesis (e.g., Lebowitz and Penrose (1937)), the former can be
demonstrated to be stronger than the later.!' More specifically, as Ehrenfest and
Ehrenfest-Afanassjewa define it, the quasi-ergodic hypothesis corresponds to the
hypothesis that the orbits (trajectories) are topologically dense in the phase space
(i.e., they pass arbitrarily close to every point of phase space). It can be demonstrated
that metric transitivity implies quasi-ergodicity, when X is a compact metric, which is
generally assumed in the ergodic theorems (Moore 2015; Kolyada and Snoha 1997).
However, the converse is not valid, since it requires the further assumption that X
has no isolated point, which does not necessarily hold in the systems of interest
(Kolyada and Snoha 1997).'? In fact, it is not even true that a minimal flow with
an invariant measure, in which every orbit is dense, is metrically transitive (Moore
2015). Since metric transitivity is a necessary and sufficient condition for the validity

10There is an interesting foundational problem associated with the definition of metrical transitivity
for “almost every x”, which is called “the measure zero problem”. The issue is that it is hard to
demonstrate that states with probability measure zero can be neglected without begging the question,
i.e., without presupposing that phase averages equal time averages. I will not discuss this problem
further for lack of space, but the reader can see Uffink (2007), van Lith (2001), Frigg (2016) for a
detailed discussion around this issue.

perhaps the misleading title of von Neumann’s paper (1932) “Proof of the quasi-ergodic hypoth-
esis” contributed to this confusion.

12Systems in which X has no isolated point is said to be a standard dynamical system (Kolyada and
Snoha 1997).
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of Theorem 5.1., then one can conclude that the “quasi-ergodic hypothesis” is too
weak to establish the equivalence between phase and time average, which means that
the second part of the Ehrenfest and Ehrenfest-Afanassjewa’s puzzle was also true.

Let us now summarize the contribution of Ehrenfest and Ehrenfest-Afanassjewa
to the development of the ergodic theorems in the 1930s. The first direct contribution
was to point out for the very first time the importance of the hypothesis that time
averages equal phase averages in a time average interpretation of probabilities. In
absence of this emphasis on the role of this hypothesis, there may have not been
enough motivation to provide such careful mathematical proofs of this equivalence.
Another direct contribution of Ehrenfest and Ehrenfest-Afanassjewa was to suggest
that neither the ergodic hypothesis nor the quasi-ergodic hypothesis can serve to
derive the desired equivalence between time and phase averages for the systems
of interest, which we have called here the Ehrenfest and Ehrenfest-Afanassjewa’s
puzzle. This motivated mathematicians and physicists to find a different hypothesis,
i.e., metric transitivity, that can serve as a basis to derive the equivalence between
phase and time averages. The proof of this “ergodic” theorem based on the notion of
metric transitivity finally solved the puzzle prompted two decades before by Ehrenfest
and Ehrenfest-Afanassjewa. But, as said above, it led to a different, yet more specific
problem: the problem of demonstrating that the real physical systems of interest are
in fact metrically transitive. In the next section, I will discuss this issue further.

5.6 The Problem of Metric Transitivity

How can one prove that the flow of a dynamical system is metrically transitive? And
how can we be sure that metrically transitive systems exist? These have proved to be
very challenging questions that have motivated an enormous amount of research (e.g.,
Oxtoby and Ulam 1941; Markus and Meyer 1947; Sinai 1970). A promising result of
the existence of metrically transitive systems was offered Oxtoby and Ulam (1941),
who showed that on a compact polyhedron equipped with a finite Lebesgue measure,
all measure-preserving homeomorphisms are metrically transitive in a topological
sense. A more concrete example of metrically transitive systems was examined by
Sinai (1970), who considered a model of dynamical systems, where the molecules
were contained in a cubical enclosure and moved with periodic boundary conditions.
Although the model was not entirely realistic (it allowed for collisions between the
molecules but not with the walls of the container), he proved that the system was
(approximately) metrically transitive. These results contrasted with the ones offered
by Markus and Meyer (1947), who showed that for Hamiltonian dynamical systems,
almost all systems fail to be metrically transitive. The latter was reinforced by the
so-called KAM (Kolmogorov, Arnold, Moser) Theorem, which stated that when
the interactions among the molecules are non-singular, the phase space will contain
islands of stability where the flow is not metrically transitive (see Lichtenberg and
Lieberman 2013; Earman and Rédei 1996). To be more specific, the theorem shows
that if one starts by a Hamiltonian system with quasi-periodic trajectories and adds
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perturbation terms that are intended to eliminate this periodic behavior, there will
still remain “islands” of periodic behavior so that the system fails to be metrically
transitive. Based on these results one can conclude that most systems of interest in
statistical mechanics are very probably not metrically transitive (Wightman 1985;
Earman and Rédei 1996; van Lith 2001).

Different reactions can be found among philosophers of science on the conse-
quences of these results. For some (e.g., Earman and Rédei 1996; van Lith 2001)
these results lead to the conclusion that the traditional ergodic (or metrically tra-
sitivity) program for interpreting probabilities and explaining the success of phase
averaging should be abandoned. Others have suggested instead (Vranas 1998; Frigg
and Werndl 201 1) that the ergodic program can be rescued by appealing to what they
call “epsilon-ergodicity” (or more precisely “epsilon-metrical transitivity”). This lat-
ter view is motivated by the possibility that most systems that fail to be metrically
transitive have a probability measure that is close enough to the microcanonical.
More specifically, (Vranas 1998) examines computational evidence for the existence
of systems that he calls “epsilon-ergodic”, which are systems that have an invariant
subset B of measure 1 — €, such that i) € is tiny or zero and ii) for almost every point
x € Xitholdsthat {¢,(x)} N B # ¢ for some time 7. Then, by generalizing the notion
of absolute continuity, he proved that if a system is “epsilon-ergodic” (which here can
be understood as “epsilon-metrically transitive”), the probability measure associated
to that system will be close to the microcanonical. One can build an intereresting
parallel with the previous discussion around the ergodic hypothesis and interpret this
“epsilon-ergodicity hypothesis” as an analog of the quasi-ergodic hypothesis. The
hope is then that one can de-idealize the hypothesis of metrical transitivity by the
hypothesis of “epsilon-ergodicity” or “epsilon-metrical transitivity” without loosing
explanatory power, since it is expected that in the latter case the probability measure
will be close enough to the microcanonical measure.

Even accepting Vranas’ results, there still remains the question of whether most
of systems of interest are “epsilon-ergodic” or more precisely “epsilon-metrically
transitive”. There is important evidence suggesting the existence of systems that dis-
play thermodynamic behavior and yet are not metrically transitive or even “epsilon-
metrically transitive” (Frigg 2016 A field guide to recent work on the foundations of
statistical mechanics Uffink 2007). For example, in a solid the molecules can oscil-
late around fixed positions so that the phase trajectory of the system can only access
a small part of the energy hypersurface (Uffink 2007; Frigg 2016). Frigg and Werndl
(2011) have argued that this is not as problematic as it seems, since one can still use the
ergodic theory for the restricted set of cases that are proven to be “epsilon-ergodic”
(epsilon-metrically transitive) such as gases. However, Earman and Redei (1996) are
skeptic about this line of reasoning, since they claim that if there are non-metrically
transitive systems that display thermodynamic-like behavior, then it is likely that the
same mechanisms that explain this behavior in non-metrically transitive systems also
explain the behavior of metrically transitive systems (or epsilon-ergodic) systems. '3

13Werndl and Frigg (2015) prove a theorem that establishes that for equilibrium to exist three factors
need to cooperate: the choice of macro-variables, the dynamics of the system, and the choice of the
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The question about the validity of the ergodic theory based on the notion of
metric transitivity that followed the discussion started by Ehrenfest and Ehrenfest-
Afanassjewa remains open in the foundations of statistical mechanics. One of the
reasons why this theory has not been given up despite the complications to demon-
strate that systems are in fact metrically transitive and other problems associated
with this approach is that this theory gives a solid foundation to the time average
interpretation of probabilities and a neat mechanical explanation of thermodynamic
equilibrium (Frigg 2016).'* Giving up the time average interpretation of probabilities
in order to get rid of the problems associated with the ergodic hypothesis is a high
price to pay, since the alternatives face similar if not more dramatic problems. Indeed,
the frequentist interpretation of probabilities violates the requirement of von Mises’s
theory (van Lith 2001; Frigg 2016), and the propensity interpretation (Popper 1959)
is inconsistent with the assumption of a deterministic underlying micro theory (Clark
and Butterfield 1987; Frigg 2016). A different strategy to deal with the problem of
interpreting probabilities consists in avoiding probabilities all in all. This approach
is known as the “typicality approach” and is based on the distinction between “typi-
cal states”, which correspond to equilibrium states and “atypical” states, which are
non-equilibrium states (Lebowitz 1993; Goldstein 2001). Although this program
solves some problems associated with the ergodic theory, it has been criticized for
not establishing a clear connection with the dynamics of the system (Frigg 2009,
2010). Very recently, (Wallace 2016) has suggested a novel interpretation of statis-
tical mechanical probabilities based on quantum-mechanical probabilities, yet the
empirical validity of this approach is still to be seen.

5.7 Conclusion

We have traced the history of the ergodic hypothesis from its origins to recent dis-
cussions in the foundations of statistical mechanics highlighting the contribution
of Ehrenfest and Ehrenfest-Afanassjewa in this debate. We have seen that apart
from pointing out the difficulties associated to the demonstration of the existence of
ergodic systems, they motivated a distinction between “ergodic” and “quasi-ergodic”
systems and, more importantly, they emphasized the role of the hypothesis that time

state space. For them a consequence of this theorem is that focusing on ergodicity as the crucial
property for the existence of an equilibrium state is misleading.

14There are other important problems associated with the ergodic approach that has not been men-
tioned here because they are not directly related with the problems discussed by Ehrenfest and
Ehrenfest-Afanassjewa. One of these problems is the measure zero problem, which I mentioned on
footnote 9. The other problem concerns the justification of infinite time limits in the definition of
time averages. The worry here is that if one wants to explain the empirical success of the micro-
canonical distribution it is not clear why one should interpret measurements as time averages, even
less as infinite time averages (Uffink 2007; Frigg 2016; Palacios 2018). Finally, there is the problem
that time average interpretation cannot easily be generalized to time-dependent phenomena and
therefore this theory seems to be restricted to the explanation of equilibrium and cannot be used as
a general non-equilibrium theory (See Uffink 2007; van Lith 2001).
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averages equal phase averages in a time average interpretation of probabilities. We
have seen that the latter, which has been sometimes regarded as a historical error
of their analysis, served to the postulation of the ergodic theorem in the 1930s and
encouraged the development of the concept of metric transitivity, which continues
playing a role in the foundations of statistical mechanics.
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Chapter 6 ®)
The Ehrenfests’ Use of Toy Models oo
to Explore Irreversibility in Statistical
Mechanics

Joshua Luczak and Lena Zuchowski

Abstract This article highlights and discusses the Ehrenfests’ use of toy models to
explore irreversibility in statistical mechanics. In particular, we explore their urn and
P—Q models and highlight that, while the former was primarily used to provide a
simple counter-example to Zermelo’s objection to Boltzmann’s statistical mechanical
underpinning of the Second Law of Thermodynamics, the latter was intended to
highlight the role and importance of the Stof3zahlansatz as a cause of the tendency of
systems to exhibit entropy increase. We also explain the sense in which these models
are toy models and why agents can use them, as the Ehrenfests’ did, to carry out this
important work, despite the fact that they do not represent any real system.

6.1 Introduction

Several contributions to this volume have demonstrated that Tatiana Afanassjewa was
not just a brilliant mathematical physicist but also a methodological and didactical
innovator. This paper will focus on a methodological aspect of the work on statistical
mechanics she conducted jointly with her husband, Paul Ehrenfest, which again
shows their willingness to approach known material from surprising angles: namely,
their use of toy models to explore irreversibility.

The Ehrenfests’ urn and P-Q model have become legendary and are often used as
didactical tools in lectures on statistical mechanics. However, until very recently, the
literature on scientific modelling paid scant attention to such toy models. Building
on the investigation into the functions of toy models by one of the authors (Luczak
2017), we are now able to investigate the Ehrenfests’ toy models in this framework
and show that, not only do they provide an excellent illustration of how toy models
work in general but they also illustrate a particular advantage of this viewpoint.
Namely, we will argue that their non-representational status allows toy models to be
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used complementary to investigate aspects of a given system and that the interplay
between the urn and P-Q model (and the later Kac-model) provides a good example
of such use. To our knowledge, both the complementary use of toy models in general,
as well as the specific use of the Ehrenfests’ ones, have not been investigated in detail
yet.

In Sect. 6.2, we will discuss toy models, their typical functions, and their unique
properties. In Sect. 6.3, the urn model (Sect.6.3.1) and the P-Q model (Sect.6.3.2)
will be described. Section 6.4 will describe why and how these models work as a
means of investigating aspects of a given target system. In Sect.6.5, we will then
discuss the complementary use of several toy models. Conclusions will be drawn in
Sect. 6.6.

6.2 Toy Models and Their Functions

A scientific model is an object, which may be either real or abstract, that has a certain
set of properties, and is used by agents for various scientific, modelling activities
and purposes. Many of these activities are aimed at developing our knowledge or
understanding of the physical world. For example, scientists frequently use models:

1. To test the compatibility of various concepts (i.e. in a consistency proof).
2. To elucidate certain ideas relevant to a theory. That is, to reach a clearer under-
standing of an idea, its implications, and its relation to other ideas within a theory.

Scientists often use simple models in ways such as these because it is typically
easier to work with an object that instantiates fewer properties than the kinds of
physical systems we want to better understand.

What is interesting to note, however, is that in a subset of situations in which
scientists use models in ways such as these, they write or speak about their models in
such a way so as to convey, with more or less emphasis, that they do not intend them
to, at least on these occasions, perform a representational function. This renders their
models nonrepresentational. Despite this, their models nonetheless help to develop a
better understanding of the world. They are nonetheless helpful because they instan-
tiate properties that are shared by the kinds of systems we want to understand.

Let us begin by laying down an expression that is intended to capture the kinds
of models, uses and intentions that are important for our purposes. Let us use the
expression “toy models”, and say that toy models are simple models that are not
intended to perform a representational function but rather to perform some other
important function, such as 1 and 2. We recognise that the label, “toy model”, is
perhaps a little bit awkward since the expression is sometimes used to refer to simple
models that might otherwise be called highly or strongly idealised (see, for example,
Alexander & Dominik Forthcoming and Jamesh 2019) but, since we wish to discuss
some situations in which some simple models are being used nonrepresentationally,
we will use the expression “toy models” for those cases, and want to suggest saving
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expressions such as “highly idealized model” or “strongly idealized model” for sim-
ple models that are at least performing a representational function. Regardless, that
is, of how we want to understand what makes them representational or idealised.

As we highlight in the coming sections, Tatiana Afanassjewa and Paul Ehrenfest
(according to the convention used in this book, we will refer to them as ‘the Ehren-
fests” in the following) developed a collection of simple models that performed a
number of important functions—including those listed above. Since there is little
reason to believe that these models are intended to represent any actual system and
because agents can successfully use them in precisely the ways the Ehrenfests did
without intending that they perform a representational function, it is reasonable to
regard their models as toy models. We will treat their models as toy models in the
reminder of this chapter.

While it is a subject of debate within philosophy of science as to what exactly con-
stitutes a model’s representation of a target, all of the leading substantive accounts of
scientific representation agree that a necessary condition of a model’s representation
of a target is that its user intends that it perform a representational function.! The
inclusion of this condition not only fits with the promising and growing view that
scientific representation is a practice performed by intentional agents but it also helps
to ensure that what a model represents, if it represents, is not ambiguous and that
analyses of scientific representation account for the logical properties of scientific
representation.” Scientific representation is neither a reflexive or symmetric relation.
Models do not (typically) represent themselves. When they perform a representa-
tional function, they represent something else. Be it a particular system or some
collection of systems. And when they represent other systems, those other systems
are not (at least typically thought to be) representations of the model. By including
the intentions of model users, analyses of scientific representation obtain the required
asymmetry and irreflexivity. Users typically do not intend that targets represent their
models nor that their models represent themselves. Since toy models are models that
are not intended to perform a representational function, it is the case that they do not
perform a representational function.

Of course, since toy models do not perform a representational function, one may
wonder about their relevance is for science. More pointedly, one may wonder how
they can perform important functions, such as 1 and 2, if they do not perform a
representational function. Models, such as the urn and P-Q model, can be used
by agents to do a lot of interesting and important work simply because either they
instantiate certain properties or because they instantiate certain properties that are
also known to be instantiated by other systems.

In the latter type of case, these similarities permit treating the model as an ana-
logue. Moreover, these similarities permit, and are sufficient for, analogical reason-

ISee, for example, Frigg and Nguyen (2016) and Frigg and Nguyen (2017).

ZHistorically, however, intentionality conditions have usually been added to analyses of scientific
representation only after they have been rejected for failing to account of the logical properties of
scientific representations.
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ing.® That is, they permit, and are sufficient for, employing some version of the
following argument schema, where S is some model and 7 is some other system:

P1. Sis similarto T in certain (known) respects.
P2. S has some further feature Q.
C. Therefore, T also has the feature Q, or some feature Q* similar to Q.

Importantly, since similarity is a reflexive and symmetric relation, it cannot be
the case that it is sufficient for scientific representation. So then, even if a model
instantiates properties that are also instantiated by other systems, this does not entail
that it represents any or all of those systems or anything at all.

In the following section, we intend to highlight the use of the urn and P-Q model
in a consistency proof (use 1), and their use in elucidating the relationship between an
important statistical mechanical concept, irreversibility, and an important statistical
mechanical assumption, the Stofzahlansatz (use 2).* In Sect.6.4 we discuss why
agents can use these models, as the Ehrenfests did, to successfully perform these
tasks, despite the fact that they do not represent any real system. We also discuss
why it is appropriate to regard the urn model as primarily aimed at providing a
simple counter-example to Zermelo’s objection to Boltzmann'’s statistical mechanical
underpinning of the Second Law of Thermodynamics and why it is appropriate to
regard the P—Q model as primarily aimed at highlighting the role and importance of
the Stofizahlansatz as a cause of the tendency of systems to exhibit entropy increase.

6.3 The Ehrenfests’ Toy-Models

In this section, we will discuss two seminal toy models developed by Tatiana Afanass-
jewa and Paul Ehrenfest: the urn model.’ (Sect. 6.3.1) and the P-Q model (Sect. 6.3.2).
Both models explore the relationship between irreversibility and the Stofizahlansatz.
However, the aspects of this problem they focus on and their respective formalisms
are very different.

6.3.1 The Urn Model

Purpose: The explicit purpose of the urn model is to provide a simple counter-
example to Zermelo’s objection to Boltzmann’s statistical mechanical underpinning
of the Second Law of Thermodynamics: i.e. the assertion that it seems “unimagin-
able”® that the entropy of an ensemble of particles with reversible microdynamics

3See Bartha (2013) for a comprehensive discussion of analogies and analogical reasoning.
“For a discussion of other important functions performed by toy models see Luczak (2017).
5The urn model was introduced in Ehrenfest and Ehrenfest (1907).

Sunvorstellbar.
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should “as a rule”’ increase with time. To falsify this claim, the urn model provides
a scenario in which such a tendency of entropy increase over time follows from
elementary probability calculations about the distribution of different states in an
ensemble of particles.® The model’s microdynamics, i.e. the moving back and forth
of balls between two urns, therefore is fundamentally reversible: any ball can (and
if the model is run over sufficiently long time scales, will) move in both directions
between the urns. However, the specific balls moving into a different urn at a given
time are selected randomly. By separating the reversible and irreversible parts of
the model, the Ehrenfests are able to demonstrate that reversible microdynamics in
combination with a well-contained probabilistic component, i.e. an analogy to the
Stosszahlansatz, can lead to an entropy-increase.

Model set-up: The urn model® consists of two urns, labelled A and B, and a bag,
labelled L. Initially, urn A contains n(()A) balls and urn B contains néB) balls, where
N = néA) + n(()B) is the total number of balls. The balls carry labels n ranging from 1
... N. The bag L, the “lottery” container, contains N consecutively numbered balls,
or the same number of other objects (e.g. paper slips, wood chips), which allow for
randomisation of the numbers.

At each time step ¢, the lottery sack L is shaken and a number # is drawn at
random. The ball carrying this number “jumps”!'? from the urn it is currently in into

the other one. The model can, of course, be easily realised materially.

Model behaviour: It is easy to see that, as the number of time steps ¢ increases, the
numbers of balls in each urn will tend to even out. Since equal numbers of balls in
each urn corresponds to the state of maximum entropy, this implies that the entropy
will show a tendency to increase as well. In the following, we will briefly outline the
Ehrenfests’ probabilistic argument for this increase.'!

Suppose that, at time ¢, urn A contains nﬁA) balls and urn B contains niB) balls.
The probabilities that a ball is chosen to jump from urn A to urn B and the other way
around are given by, respectively:

(A—B) ”z(A)

D =N (6.1)
(B—A) niB)

D =N (6.2)

The difference between those probabilities is then directly proportionally to the
difference in the number of balls in each urn:

7in der Regel.

8See Ehrenfest and Ehrenfest (1907, p. 2).

9For the original description of the set-up, see Ehrenfest and Ehrenfest (1907, pp. 2—4).
IOhiipft.

1See Ehrenfest and Ehrenfest (1907, p- 2-3).
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n;A) _ n;B)

Ap = ,
P N

(6.3)

i.e. it will be more likely (Ap > 0) that a ball moves from urn A to urn B if there are
currently more balls in urn A than in urn B (niA) > niB)), and more likely (Ap < 0)
that a ball moves from urn B to urn A if there are currently more balls in urn B than
in urn A (n,(A) < n,(B)). Accordingly, the model tends to balance out the numbers
of balls in each urn. This does not imply, of course, that lottery draws that increase
the difference in those numbers may never occur. However, the larger the existing

difference in the numbers of balls is, the less likely such draws become:

It is always more probable that the chosen ball is in the fuller rather than in the emptier urn.
Therefore, while urn A is still much fuller than urn B, urn A will empty itself into [urn] B
during a sequence of draws and only seldom receive a ball from [urn] B.!?

Moral: The Ehrenfests conclude that the toy model demonstrates that, if a micro-
dynamics is assumed that treats all microstates as equally accessible by all par-
ticles, then the tendency of an ensemble of particles towards maximum entropy
follows from elementary probability considerations.'> However, they concede that
the assumption of an equiprobable state-space distribution (“molecular chaos™),',
i.e. the Stofsizahlansatz, which is represented in the urn model through the random
draws from the lottery sack, is a premise of the model. The toy model should, there-
fore, be seen as demonstrating the consequences of the Stoffzahlansatz rather than
as providing justification for this assumption itself:

We are therefore not touching on the question, in how far the proof of the [Second Law

of Thermodynamics] can be seen as complete; which specific meaning one should give the
» 15

hypothesis of “permanent molecular chaos”.
Further development by Kac: A modified version of the Ehrenfests’ (1907) urn
model was presented by Kac.'® Since this toy model was already discussed in detail
by one of the authors,'” we will only briefly outline the major differences between
the Kac’s ring model and the urn model. Rather than representing particle dynamics
as the random movements of balls between two urns, the ring model represents these
dynamics as rotations and colour changes on a ring of balls.

12Ehrenfest and Ehrenfest (1907, p. 2): Es ist immer wahrscheinlicher, daB die jeweils aufgerufene
Kugel in der volleren, als daf} sie in der leereren Urne angetroffen wird. Solange also die Urne A
noch viel voller ist als die Urne B, wird sich bei den folgenden Ziehungen in der Regel die Urne A
in B entleeren und nur ausnahmsweise eine Kugel aus B erhalten.

13See Ehrenfest and Ehrenfest (1907, p-4).

"molekulare Unordnung.

I5Ehrenfest and Ehrenfest (1907, p. 4, footnote 1): Deshalb lassen wir hier die Frage durchaus
unberiihrt, inwieweit der Nachweis des H-Theorems etwa als liickenlos angesehen werden kann;
welchen Sinn man im speziellen der Hypothese einer dauernden “molekularen Unordnung” geben
soll.

16Gee e.g. Kac (1956).

17See Luczak (2017).
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In particular, the model consists of N black and white balls placed onto a circle
and connected to each other by a corresponding number of N-edges. A number
of N, < N markers are then randomly distributed over the edges and the balls are
moved step-wise along the edges of the circle. Furthermore, whenever a ball traverses
an edge with a marker it changes colour. The set-up of the ring-model, therefore,
possesses one crucial difference to the urn model: the randomising Stofizahlansatz
only needs to be invoked once, i.e. during the placing of the markers. Therefore,
any dynamics on the ring are fully reversible and the colour development of the
balls shows additional recurrent properties (if the model is observed for a sufficient
number of time steps). Nevertheless, every single ring will—for the majority of its
development—tend towards equal numbers of black and white balls, i.e. to a state
of maximum entropy. Furthermore, for an ensemble of rings with randomly chosen
N, the average entropy development will monotonously increase for a period of 2N
time steps.

However, given that Kac’s ring model still includes an explicit implementation
of the Stofizahlansatz, the conclusions to be drawn from this model appear to be
essentially identical to the ones drawn from the original urn model: both toy models
demonstrate that—assuming a randomising component like the Stofizahlansatz is
included in the dynamics—a tendency to increase entropy follows from elementary
probabilistic calculations on the distribution of particles through the appropriate state
space.

6.3.2 The P-Q model

In this section, we will discuss the purpose, formalism and behaviour of the P-Q
model.'® The model is also known as the ‘wind-tree model’. However, this seems to
be something of a misnomer since the model is clearly intended as a model of the
interaction of two ensembles of particles.

Purpose: The discussion of the P-Q model is labelled as an “interlude”.'® The Ehren-
fests describe the purpose of the model as the provision of a demonstration of “the
place the Stofizahlansatz occupies in the Maxwell-Boltzmann investigation [of the
tendency of entropy increase]”.? In contrast to the urn model, the P-Q model is
therefore not primarily a means to demonstrate the likelihood of a tendency towards
entropy increase but serves to highlight the importance of the Stofzahlansatz as a
cause of this tendency. It therefore advances the conceptual investigation that was
started with the urn model (Sect.6.3.1): the earlier toy model aims to show that it is
possible to have a model combining reversible microdynamics with a probabilistic
component that shows a statistical increase in entropy; the later investigates the the

18The P—Q model was introduced in Ehrenfest and Ehrenfest (1909).
197 wischenstiick.

20Ehrenfest and Ehrenfest (1909, p. 19): ... welche Stellung der Stofzahlansatz in den zuletzt
erwihnten Maxwell-Boltzmannschen Untersuchungen einnimmt.
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Fig. 6.1 Interaction between
P- and Q-molecules in the
P-Q model. Original
illustration from Ehrenfest
and Ehrenfest (1909, p. 20)

precise place of the probabilistic component in a scenario with collision dynamics
(rather than the abstract urn movements of the urn model). In particular, the prob-
abilistic component is now restricted to the assumption that the ‘collision sites’ are
distributed through the available space in a way that makes it equally likely for each
molecule of a given population to experience a collision. The P—Q model, therefore,
has a much more direct implementation of the Stofizahlansatz, showing that ran-
domising the number of collisions (‘Stoesse’) in sufficient to inducing an overall
increase of entropy.

Model set-up: The P-Q model?! is introduced as a highly-simplified model of the
interactions between two populations of molecules: the P-Molecules and the Q-
Molecules. The P-Molecules are point-particles, which move frictionless and without
experiencing external forces on a plane. The P-Molecules do not collide with each
other and can only move in the four principal directions (along the directions of the
—x-, x-, —y- and x-axis) of a given coordinate system inscribed on the plane.

In contrast to the P-Molecules, the Q-Molecules are motionless squares of length
a. The diagonals of the squares are aligned with the x- and y-axis, i.e. the four
sides of the Q-Molecules are oriented at angles of ¢ = /4 to all possible directions
of movement of the P-Molecules (see Fig.6.1). The Q-Molecules are distributed
uniformly over the plane: each “larger area contains approximately the same [number
of Q-Molecules]”.?> Furthermore, the average distance between two Q-Molecules is
much greater than their principal length a.

21For a description of the model’s set-up, see Ehrenfest and Ehrenfest (1909, pp. 19-20).
22Ehrenfest and Ehrenfest (1909, p. 19): ... auf jedes grosseres Gebiet sollen nahe gleichviel entfallen
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Let N be the number of P-Molecules and nfx) , n,(x), ni_y ) and nﬁy ) the number of
P-Molecules moving in the direction of the —x-, x-, —y- and y-axis at time #, respec-
tively. Due to the relative orientation of Q-Molecules’ sides and the P-Molecules’
directions of movement, an elastic collision between a P- and a Q-Molecule will
change the former’s direction of movement by deflecting it into one of the orthogo-
nal directions of movement: e.g. after a collision with a Q-Molecule, a P-Molecule
originally moving in the —x-direction will either move in the —y- or the y-direction.
The sign of the direction of movement after a collision depends on which of the sides
of the Q-Molecule the P-Molecule hits (see Fig.6.1).

At time ¢, the number of molecules changing from a given direction i to an
orthogonal direction j during the next time step At is then given by:

(i—)) (i
ntlej =k,-,j,A,n,l), (64)

where k; j a, is the fraction of P-molecules moving in direction i that experience a

collision with a side of a Q-molecule such that they are deflected towards direction j.
The Stofizahlansatz is implemented into the model through the following simpli-

fying assumption about the fractions of molecules experiencing collisions &; ; a,:

The analogy to the Stofizahlansatz, which we mentioned several times before, now consists
in the following claim:

The fraction of P-Molecules with each direction of movement in the band S is such that it
corresponds to the ratio of the total area of all bands S to the total free space available.??

Thereby, the bands S are finite projections of the relevant side of a given Q-Molecule,
i.e. they constitute a kind of catchment area of the Q-Molecule’s sides, so that,
within time step At, all P-Molecules within this areas which are moving in the
projected direction i will experience a collision that reflects them to direction j
(see Fig.6.1). Since the implementation of the Stoffzahlansatz prescribes that the
fraction of molecules experiencing such collisions is proportional to the total area
of the bands S, it is the same for all P-molecules, regardless of their direction of
movement. Furthermore, since the P-Molecules are moving with constant speeds,
the lengths of the bands S (and hence the ratio of their totality to the total available
area) is directly proportional to the length of the time step At:

ki'j,Af = kAt, (65)

where k is a constant that depends on the side length a

Behaviour: The number of molecules changing from direction i to direction j only
depends on the time step A¢ and the number of molecules moving in direction i at
the beginning of this time step:

Ehrenfest and Ehrenfest (1909, p. 20): Das Analogon zu dem mehrfach genannten StofSzahlansatz
besteht nun in der folgenden Behauptung: Von den P-Molekiilen jeder einzelnen Bewegungsrichtung
entfillt auf die Streifen S ein solcher Bruchteil, als dem Verhiltnis der Gesamtflidche aller S zur
totalen freien Fldche entspricht.
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n' o = kA, (6.6)

However, the same must be true for the reverse kind of collisions, i.e. reflections
from direction j to direction i:

nIo" = kA (6.7)

The total difference between the number of molecules changing from direction i to
direction j and from direction j to direction i is then given by:

An' T = kAt|(n® — ') (6.8)

Accordingly, at each time step, the effect of the collisions between Q- and P-
Molecules will be such as to counteract any differences between the numbers of
P-molecules moving in directions i and j. Since this computation can be generalised
to any pair of direction i and j, The Ehrenfests conclude that the implementation of
the Stofizahlansatz leads to a monotonous approach of a uniform distribution of the
numbers n,(i):

If the Stofizahlansatz [(as quoted above)] is consistently applied to the calculation of the
numbers [n;J;l)] during each time step At, then one obtains a monotonous decrease of the
differences between the numbers [nix), nfx), n,(y) s n,(y) 124

This also implies an increase of entropy in the model and an equilibrium distribution
of velocities corresponding to:

_ S , N
(=x) O _ ni)) _

n;x) = nt = nt 4 N (69)

which, in this simplified model, is the equivalent of Maxwell’s velocity distribution.?

Moral: By using a scenario that is somewhat closer to a real many-particle situation
than the one represented by the urn model, the P-Q model allows the Ehrenfests to
pinpoint he role of the Stofizahlansatz more precisely. It highlights that the apriori
assumption of an equal accessibility of all states by all particles is crucial to obtaining
the dependency of the change in particle numbers on the existing velocity distribution,
which underlies the tendency of the model to minimise such differences.

The P-Q model also has the advantage that—as in the Kac model—the argument
for an entropy increase only involves the consideration of fully deterministic terms:
the randomisation through the Stofizahlansatz is accomplished through the choice
for the constants k; ; rather than through repeated random draws.

24Bhrenfest and Ehrenfest (1909, p. 20): Wenn bei der Berechnung der Zahlen N1, Ny, Na3, N32
etc. fiir jedes Zeitelement Ar immer wieder der Stofizahlansatz (7) zugrunde gelegt wird, so erhilt
man eine monotone Abnahme der Unterschiede der Zahlen f1, f2, f3, fa.

25See Ehrenfest and Ehrenfest (1909, p- 19).
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However, the Ehrenfests emphasise that the toy model only demonstrates a ten-
dency of entropy increase if the Stofizahlansatz is assumed as a premise: the justifi-
cation of this premise needs to be provided by an unrelated argument.’®

6.4 Why These Toy Models Work

In this section, we explain why agents can use the urn model to highlight the com-
patibility of various concepts, as the Ehrenfests did, despite the fact that it does not
represent any real system. We also explain why agents can use the P-Q model to
elucidate the relationship between irreversibility and the Stofizahlansatz, again, as
the Ehrenfests did, despite the fact that it too does not represent any real system.
We also explain why it is appropriate to regard the urn model as primarily aimed at
providing a simple counter-example to Zermelo’s objection to Boltzmann’s statisti-
cal mechanical underpinning of the Second Law of Thermodynamics and why it is
appropriate to regard the P—Q model as primarily aimed at highlighting the role and
importance of the Stofizahlansatz as a cause of the tendency of systems to exhibit
entropy increase. We begin with some historical background.

Ludwig Boltzmann famously attempted to account, in a classical framework, for
the fact that isolated systems away from equilibrium spontaneously approach equi-
librium and that they thereafter remain in equilibrium, if they are not interfered with.
In 1872, Boltzmann considered how the distribution of velocities of the molecules of
a contained dilute gas could be expected to change under collisions and argued that
there was a unique distribution—now called the Maxwell-Boltzmann distribution—
that was stable under collisions.?” Boltzmann further argued that a gas that initially
had a different distribution would move towards the Maxwell-Boltzmann distribu-
tion. To argue for this, Boltzmann defined a quantity, which we now call H, showed
that it reached a minimum value for the Maxwell-Boltzmann distribution, and argued
that it would monotonically decrease to its minimum.?® This result is now known as
Boltzmann’s H-theorem. It is a straightforward consequence of Boltzmann’s trans-
port equation. Importantly, it is a temporally asymmetric result.?’

In the wake of this result, many began to wonder how Boltzmann arrived at it,
having only assumed a dynamics that is symmetric under time reversal. It was later
discovered that he did not, and two famous objections have shown that he could not.
These are known as the reversibility and recurrence objections. The former is usually
credited to Josef Loschmidt and the latter to Ernst Zermelo.*° The reversibility objec-

26For the discussion by the Ehrefests, see Ehrenfest and Ehrenfest (1909, pp. 18-19); for reasons
to treat the Stofizahlansatz as true, see Luczak (2016).

27See Boltzmann (1872).

28The quantity we call H was originally denoted E in Boltzmann’s early work. See Boltzmann
(1872).

29See Brown et al. (2009) for more on Boltzmann’s H-theorem.
30See Uffink (2007) and Brown et al. (2009) for more on these objections.
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tion applies to systems whose microdynamics are symmetric under time reversal. In
the case of Boltzmann’s gas, it says that for any set of trajectories of the molecules
of the gas, the time-reversed trajectories are also compatible with the dynamics. So
not all microstates of the gas at any time lead to a monotonic decrease of H. The
recurrence objection applies to classical systems with bounded phase space energy
hypersurfaces. That is, to systems, with total fixed energy, such as Boltzmann’s gas.
If we consider a small open neighbourhood of the system’s initial state and ask, will
the system, after it leaves that neighbourhood, ever return to it? Then the answer,
which makes use of Henri Poincaré’s recurrence theorem, is yes, it will, for almost
all initial phase space-points, i.e. for all except a set of Lebesgue measure zero. More
plainly, but less precisely, the objection notes that no initial microstate will yield a
monotonic decrease of H.

To derive Boltzmann’s original, asymmetric, result, one needs more than what
is given by simply applying Newton’s laws of motion to molecular collisions. For
Boltzmann, it was a temporally asymmetric assumption that appeared in the deriva-
tion of his transport equation. The assumption, which posits an absence of correla-
tions between the velocities of colliding molecules at all times, is now known as the
Stofizahlansatz.®'

In the light of this discussion, and, in particular, the recurrence and reversibility
objections, one may wonder whether it is possible to reconcile irreversible macro-
scopic behaviour with an underlying dynamics that is recurrent and symmetric under
time reversal. It is precisely this thought that underlies the objection raised by Zer-
melo that we noted earlier, i.e. that it seems “unimaginable” that the entropy of an
ensemble of particles with reversible microdynamics should “as arule” increase with
time. In response to this challenge, the Ehrenfests offer the urn model (Sect.6.3.1).

Importantly, the challenge Zermelo sets ask whether certain properties are
compatible—namely, are there systems which exhibit observable irreversible
behaviour, whose evolution is recurrent and symmetric under time-reversal? Since
these properties are perfectly general, and not tied to any particular system, the chal-
lenge can be successfully answered by locating or constructing a system, real or
otherwise, that consistently instantiates these properties. Let us call the set of sys-
tems that instantiate all of these properties J. As we saw in the previous section, the
urn model consistently instantiates these properties. It is a member of J. So it can be
used by an agent, as it was by the Ehrenfests, to address this challenge. Of course,
there is nothing unique to the urn model in this respect. Other members of J that
consistently instantiate these properties would work equally well. If, in constructing
and establishing this consistency proof, a user does not intend that the urn model
perform a representational function, then it does not perform a representational func-
tion. It neither represents some other system, the set J of systems, or anything else.
In such a situation, the urn model is a toy model. An agent can use the model in
this consistency proof and answer Zermelo’s challenge without intending that it per-

31The term “Stofsizahlansatz” was coined by Paul and Tatiana Ehrenfest (1907). See Uffink (2007)
and Brown et al. (2009) for more on the Stofizahlansatz.
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form a representational function because it instantiates the set of properties whose
compatibility is questioned.

While the urn model successfully addresses Zermelo’s challenge, it does so by
essentially incorporating the Stofizahlansatz into the dynamics. This obscures the
role and importance of the assumption, as one might think that this is merely an
artefact of the model. What is needed then, if one wants to elucidate the relationship
between irreversibility and the Stofizahlansatz is to locate or construct a model, real
or otherwise, whose tendency of entropy increase crucially depends on adding the
assumption to the model. The most vivid way of doing this is to explicitly appeal to
the assumption after specifying a dynamics that does not either directly incorporate
it or have it as a consequence. This is precisely what the Ehrenfests did when they
proposed their P-Q model. In effect, this move amounts to adding an additional
property to J, where this property is a constraint on a system’s allowable dynam-
ics, and to abandoning the requirement that the new set, J + S, be consistent. Since
this additional property/constraint is, like the other properties that characterise J,
perfectly general, and not tied to any particular system, one can elucidate the rela-
tionship between irreversibility and the Stofizahlansatz by locating or constructing a
model, real or otherwise, whose tendency of entropy increase crucially depends on
adding the assumption to the model after specifying a dynamics that does not either
directly incorporate it or have it as a consequence. If, in elucidating the relationship
between irreversibility and the Stofizahlansatz, a user does not intend that the P-Q
model perform a representational function, then it does not perform a representa-
tional function. It neither represents some other system, the set J + S of systems, or
anything else. In such a situation, the P-Q model is a toy model. An agent can use
the model to elucidate the relationship between irreversibility and the Stoffzahlansatz
without intending that it perform a representational function because it instantiates
the requisite set of properties.

With these ideas having been expressed, we are now in a position to appreci-
ate why it is appropriate to regard the urn model as primarily aimed at providing a
simple counter-example to Zermelo’s objection to Boltzmann’s statistical mechani-
cal underpinning of the Second Law of Thermodynamics and why it is appropriate
to regard the P-Q model as primarily aimed at highlighting the role and impor-
tance of the Stofizahlansatz as a cause of the tendency of systems to exhibit entropy
increase. As they have been presented here, following the Ehrenfests’ discussion,
only the urn model consistently instantiates the properties that are elements of J.
Since the Stofsizahlansatz is a temporally asymmetric assumption, it is, strictly speak-
ing, incompatible with the P-Q model’s symmetric dynamics.*> So the model, so
described, cannot be used to address Zermelo’s challenge. It can, however, be used to
address this challenge by suitably modifying it so that the Stofizahlansatz is approx-

32This is easiest to see if we consider the extreme disequilibrium state. Suppose that, at 1 = 0,
k_x, j,a, =1, and that the Stofizahlansatz holds. A time A, later, a fraction of these P-molecules
have been scattered, half into the —y-direction, half into the y-direction. Suppose, now, we reverse
the velocities, and ask what fraction of, say, the y-direction P-molecules will collide with a Q-
molecule in time A,. Answer: all of them! The P-molecules that are not travelling in the x-direction
are all on collision courses that will turn them into x-travelling molecules.
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imately true (see Appendix A of Brown et al. 2009). Since the Stofizahlansatz is not
an explicit assumption in the urn model, but rather, in essence, incorporated into its
stochastic dynamics, no conflict arises between it and the urn model’s symmetric
dynamics. It can be used to address Zermelo’s challenge. Since the importance and
effective role of the Stofizahlansatz is obscured in the urn model but vivid in the P-Q
model, it is for these reasons that we say that it is appropriate to regard the P-Q model
as primarily aimed at highlighting the role and importance of the Stofizahlansatz as
a cause of the tendency of systems to exhibit entropy increase and appropriate to
regard the urn model as primarily aimed at providing a simple counter-example to
Zermelo’s objection.

6.5 Complementary Use of Toy Models

As explained in Sect. 6.4, the Ehrenfests’ toy models do not represent any one Sys-
tem but foster the drawing of conclusions via arguments from analogy about the
specific aspects in which they are similar to other systems and to classes of sta-
tistical mechanical systems. The fact that these models do not represent allows for
the complementary use of several different toy models in an inquiry into different
aspects of a system. In this respect, toy models are crucially different from models
that represent: different models that represent the same target system need either be
viewed as exclusive alternatives to each other or as ranked according to representa-
tive accuracy.’ In contrast, multiple toy models, which resemble a given system in
different ways, can be used complementary to each other.

This process can be formalised using the reasoning scheme introduced above
(Sect.6.2) by adding additional reasoning steps based on the presence of a second
model to it. Suppose S; and S, are both toy models and T is some other system.
Then we can—unproblematically and without having to worry about their precise
relationship to each other—use the two models in a process of iterative reasoning:

P1. S is similar to T in certain (known) respects.

P2. S; has some further feature Q;.

C1. Therefore, T also has the feature Q, or some feature Q7 similar to Q;.

P3. S, is similar to T in certain (known) respects, which do not need overlap, or
even be compatible, with the respects in which S is similar to 7.

P4. S, has some further feature Q5.

C2. Therefore, T also has the feature Q», or some feature Q3 similar to Q,.

C. Therefore, T also has the features Q| and/or Q,, or some feature Q7 and/or Q%

similar to O and Q», respectively.

The iterative investigation of 7' through a series of toy models S, S,, ..., S, can be
extended to any number n of steps.

33For a description of modelling with representing models, see e.g. Frigg and Nguyen (2016, 2017).
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So far, we have not said anything about the relationship between the features
of §; and §,. In an unproblematic use of the iterative reasoning formalised above,
these will be distinct features, so that the use of different toy models will simply
allow us to explore more and more features of 7. However, it might also be the
case that some of the attributed features, Q; and Q;, are not compatible with each
other, either because they describe the same feature in different ways or because the
system T cannot have both features simultaneously. In this case, the inquiry needs
to be extended by a second step, in which the scientist judges which feature should
actually be attributed to 7. The justification for this decision will likely refer to the
degree of similarity the models have to aspects of the original system, as established
in steps P1 and P3 above. It is notable that this verification requires considerably less
than the comprehensive evaluation of rival representational models: it only requires an
evaluation of the specific aspects in which the toy models are similar to 7', concluding
with a decision about which model is more realistic with respect to these aspects, or
which model’s realistically presented aspects are more crucial to the system 7.

The use of the Ehrenfests’ toy models (Sect.6.3) can be seen as an example
of such complementary reasoning and partial evaluation. Their investigation aims
at establishing two related features Q; and Q»: whether irreversible behaviour is
compatible with an underlying physics that is recurrent and symmetric under time-
reversal (Q1, a feature of the urn model S7); and how irreversible behaviour manifests
from an underlying deterministic dynamics with a Stoffzahlansatz-like assumption
(Q», a feature of the P-Q model S).

With respect to the first concern, we can point to the urn model and use it to settle
the compatibility question. With respect to the second, it should be noted that we
can use the urn model, in an argument from analogy, to draw the conclusion that
irreversible behaviour trades on a stochastic dynamics of a particular sort. Since we
have reason to believe or at least take, the underlying dynamics of ordinary statistical
mechanical systems (e.g. a gas) to be deterministic, we reject this conclusion. If
we move then to a model that incorporates a deterministic dynamics, say, the P-Q
model, on the basis of this consideration and find that in order to exhibit irreversible
macroscopic behaviour we need a Stoffzahlansatz-like assumption, either because it
is the most simple or natural or, perhaps unbeknownst to us, the only way of achieving
it, then we draw the conclusion, using an argument from analogy, that such behaviour
is manifest in the gas because of the assumption. We have now moved from the initial
conclusion C1, that irreversible behaviour is compatible with a reversible dynamics,
to the more precise conclusion that C,, that it can be generated by deterministic
dynamics with a Stoffzahlansatz-like assumption.

It is notable that the two models are not consistent with each other: the urn model
has stochastic dynamics (Q3) and the P-Q model does not. However, since we are
not interested in either model being a precise representation of T, or even any rep-
resentation of 7', but only use these models as complementary, investigative tools,
this is not problematic for us.

However, since the two features Q3 (stochastic dynamics) and Q, (deterministic
dynamics and Stofizahlansatz) are not compatible with each other, a decision needs
to be made about which feature is to be the one we conclude about 7. The outline of
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the reasoning above pre-empts this decision: the latter feature is seen as the correct
one. Itis only at this point that a comparison of the resemblance of the two models is
conducted: the P-Q system has all things considered, and on balance, more properties
in common with everyday statistical mechanical systems, such as a gas system, and,
in a number of cases, these properties are more fine-grained. For example, while both
the P—Q and urn model involve changes in particle numbers, only the P-Q model
involves changes that result from collisions.

The epistemological advantages gained from such the complementary use of
toy models are obvious: it allows for the selective investigation and clarification
of particular features, or the ability to investigate different questions related to a
single topic, without having to appeal to representational models. In fact, the non-
representativeness of toy models makes this complementary use possible since it
allows for the models to be treated not as incompatible representations of the same
scenario but as investigative tools in a common inquiry.

The Ehrenfests’ use of toy models illustrates these advantages: it begins by asking
two questions about the nature of irreversible behaviour. One of them is concerned
with whether such behaviour is compatible with an underlying physics that is recur-
rent and symmetric under time reversal. The other question is concerned with how
such behaviour manifests itself in a gas system from its underlying physics. Since
the use of toy models relieves any worries about using incompatible models when
investigating and attempting to answer different questions related to irreversible
behaviour, the Ehrenfests’ are free to devise and use whatever toy models they think
will help them best answer these questions. Importantly, they need not worry about
whether any model they use to answer one question related to irreversible behaviour
is incompatible with any model they use to answer a different question.

6.6 Conclusion

In Sect. 6.4, we showed that the Ehrenfests’ statistical mechanics toy models, i.e. the
urn model (Sect.6.3.1) and the P-Q model (Sect. 6.3.2), fulfil the function usually
ascribed to toy models (Sect. 6.2): they show that an irreversible entropy evolution and
time-symmetric dynamics are compatible properties of statistical mechanical system
and demonstrate that such irreversibility is an implication of the Sto3zahlansatz. As
such, the Ehrenfests’ toy models provide a further illustration of the investigative
functions often performed toy models, as identified by Luczak (2017).

Furthermore, we demonstrated (Sect.6.5) that the non-representative nature of
toy models allows a group of such models to be used in a complementary way:
different toy models can be designed to answer different questions about a system
without any constraints on their compatibility. Accordingly, rather than being a dis-
advantage or defect, their lack of representation makes them uniquely effective as
investigative tools.
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The Ehrenfests clearly realised the investigative advantages of toy models. Their
introduction and use of the urn and P-Q model was clearly instrumental in popular-
ising the use of toy model in statistical mechanics and prepared the ground for the
development of the even more influential Kac-ring model.
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Marina Baldissera Pacchetti

Afanassjewa Foundations of Thermodynamics 1956

Preface (VORWORT) pp. IX-XII

[IX] The most important motive that stimulated the research on the laws that make
up the subject of thermodynamics was the wish to find the cheapest way to obtain
work from the forces of nature.'

This motive also prompted the popular formulations of the different laws:

I: “It is not possible to obtain work from nothing” (i.e., without consuming a
corresponding quantity of work from nature);

II: “It is not possible to let a periodic machine turn heat into work by using only
one single heat reservoir of a particular temperature” (i.e., one always has to release
part of the obtained heat into the environment [which is kept] at a lower temperature);

III: “It is not possible to reach the absolute zeroth value of the temperature” (in
fact, one can see that at this temperature the quantity of heat released by a cyclic
process would be zero).

As one can see, all of these are answers to the different aspects of one and the
same question regarding the most economical use of the forces of nature in order to
produce the work desired by mankind—and they are pessimistic answers!

Since its conception, thermodynamics was weighted down with worries about
economy [of heat conversion], and these worries have had not only a stimulating
but also, in hindsight, a hindering influence on its development—as they do in the
developments of the human individual.

This hindrance affected the correct understanding of the second law and those
theories of the structure of matter that attempt to explain it.

IP. Epstein has given evidence of interesting data in his Textbook of Thermodynamics, which shows
the important contribution to the discovery of the first law by the Medici.
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[X] It was natural for the engineer, from whose hands the physicist received
the problem of thermodynamics, to see all the causes that decreased the “efficiency
coefficient” as one general evil, and not to divide them into categories. So it happened
that in almost? all textbooks, from the beginning until now, the representation of the
second law that is closely connected with the “economic coefficients,” has been tied
together with the dissipation of energy and with the one-sidedness of the processes
of nature, despite the fact that this dissipation is relevant only for the economic
coefficients but not for the actual nature of the second Law—namely for the fact that
the expression % is a complete differential.

This viewpoint is not only harmful in so far as it unnecessarily complicates one
of the fundamental formulas of thermodynamics and makes its derivation hard to
understand, but also because it diverted the attention of the physicist onto the wrong
tracks at a particular point (namely at the point of handling the Boltzmannian theory
of the H-Function?), and it was the cause of an endless flood of publications that
strived to reconciliate logically incompatible things with one another.

If I dare to produce one more book among so many, and in some cases excellent,
textbooks on the same topic, then it is to show how one can free the derivation of the
fundamental thermodynamic equations from the question regarding the direction of
natural phenomena and from the dissipation of energy.

On the one hand, in addition to this, it appeared desirable to me to deal one more
time thoroughly with a series of concepts that usually are taken as clear, without
really being clear. On the other hand, I have here given an account of my attempt
[XI] to more detailedly treat the so-called “irreversible processes” in terms of pure
thermodynamics (i.e., independently of any hypothesis concerning the underlying
structure of matter), and at least to outline a proof for the increase of entropy (although
not without the explicit introduction of a very plausible hypothesis—Hyp. 111, 3).
This is something that, as far as I know, has not been carried out by anyone until now
(one usually does not go further than to show that the entropy cannot decrease).

The separation of the second law from the question regarding the dissipation of
energy makes it possible to illuminate more clearly the relation between the theory
of the H-Function and thermodynamics. One can show that the one-sidedness of the
trajectory of the phenomena, that Boltzmann wanted to prove—but could not—is
irrelevant for the validity of the equations of thermodynamics, and that independently
of this, the H-Function is of great importance for the explanation of those equations,
that make up the actual content of the second law.*

This book is therefore dedicated to the representation of principles. Accordingly,
it does not contain any exact descriptions of real experiments nor any applications;

2The third edition of the textbook by V. D. Waals, edited by prof. Ph. Kohnstamm, does contain a
treatment of the “Second Law” (Zw.H) directly related to the receptions of this book. This is also
partly the case for the course by L. G. de Haas-Lorenz. Compare also with A. Landé: Axioma-
tiske Begriindung der Thermodynamik von C. Caratheodory. Handb. d. Phys. Bd. IX, p.282, §I.
(Herausgeg. C. H. Geiger u. K. Scheel Verl. Julius Springer.)

3Regarding the true meaning of the H-Function for the “Second Law,” c.f. appendix II, and regarding
the reconciliation incompatible things, c.f. appendix III.

4C.f. citation.
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it only contains thought experiments and very simple illustrations in order to clarify
one concept or another. This book also does not aim to do justice to the great founders
of thermodynamics by providing complete historical quotations. These two aspects
of the subject can be found in so many existing courses, and its incorporation into
the actual theme of this book would make the argument of this book more difficult.

Nevertheless, I hope that it can also be used by the beginner as a useful addition
to the usual course—at least as long as the approach that I have imagined has not
yet become part of the didactical practice. Above all, however, this book is directed
at lecturers of thermodynamics: it is my experience that a careful discussion of the
foundational concepts makes the understanding of the material easier.

[XII] A mathematical chapter is appended to the actual course of Thermody-
namics,’ dedicated to the theory of the so-called Pfaffian equations (Pfaff’schen
Gleichungen), in so far as these are necessary for the understanding of thermody-
namics. This theory is not taught in universities as a mandatory topic for all physics
students, so that these students have to deal simultaneously with two difficulties
when they are taught thermodynamics. This is what would happen to someone, if
they had to learn about the fluctuations of currents in their galvanic chain without
having first learned about the cosine function. As an aside, this theory will not be
necessary before chapter I'V.

Afanassjewa Foundations of Thermodynamics 1956

Chapter I pp. 1-16

(1]

First Chapter

Introductory Remarks

§ 1. Parameters of State

We will call “a system” any combination of bodies whose properties are studied
in thermodynamics. In special cases, the system also may be a single homogeneous
body. We distinguish between the “equilibrium” and the “out of equilibrium” states of
a system. A system is in “equilibrium” if a state is maintained permanently, except if
there are influences from the environment that can disturb this equilibrium. A system
is “out of equilibrium” if it cannot maintain a state permanently: this inability is itself
the cause of its [the state’s] changes.

Whether a system is in equilibrium, or not, depends on the distribution of particular
quantities, which characterize its state and which we will call “parameters of state,”
over its different parts and on the structure of the system (i.e., on the connection
between the different parts of the system and its relation to the environment).®

The equilibrium state is completely determined by the values of a fixed number
n of its parameters of state. This can be clarified by some easy examples.

5 Appendix I, Note 2, p. X

5Qur definition of “equilibrium” relies, indeed, on an idealized extrapolation of experience: nowa-
days one also thinks about the spontaneous departure from a state that remains unchanged for and
an extremely long period of time: this in connection with the meaning of the thermodynamics quan-
tities by means of the kinetic theory. The quantum-mechanical interpretation also does not assume
any infinitely lasting states of equilibrium.
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Example 1. The state of equilibrium of a quantity of a gas in a cylinder sealed by
a piston can be described unambiguously, by giving the value of its volume and its
pressure on the piston [2] because one can determine its temperature, density, etc.
from these. This is a system for which n = 2.

Example 2. Two quantities of gas that are in a cylinder closed on both sides by
moving pistons and that are themselves separated by a third piston, can be made into
a system with n = 3 in various ways:

2a. The middle piston is unmovable but allows for exchange of heat. In this case,
the equilibrium state is determined by a common temperature 7 and by the pressures
p1 and ps.

2b. The middle piston can move freely but it does not allow for the exchange of
heat. In this case, the equilibrium is only possible when the pressures of the two
parts have the same value p. The temperatures 7; and t,, however, can be indefinitely
different. The volumes, etc., are then determined by the three quantities p, 71, 7.

If the middle piston is both movable and allows for the exchange of heat, then we
obtain a system with n = 2.

The equilibrium states described above can, however, only be maintained if the
conditions of the environment are adjusted to allow this: either one should require a
complete isolation from its environment for all three examples, or all bodies that are
in contact with the different parts of the system should have the same temperature as
those parts. The pressure on the outer side of the piston should also be the same as
the pressure exerted on the piston by the corresponding internal parts of the system.

In order to describe the equilibrium state of the system, one can choose any other
parameters instead of the ones just used, as long as the former are functions of the
latter: one can calculate the value of the ones from the equations that relate the new
parameters with the others, if one knows the latter (obviously only if the solutions
to the equations are unique!).

It is only essential that an equilibrium state of a system—depending on its struc-
ture—is always determined by a certain number of independent parameters. This
means the values of all other parameters are completely determined by these.

(3]

§ 2. Point parameters and additive parameters

We now want to highlight certain types of parameters of state.

“Point parameter”: one can describe as such those parameters whose values are
not tied to the extensions and masses of the matter they describe. This is to be
understood in the following way: if one were to virtually decompose the system into
much smaller subparts, then it would be possible to ascribe the same value of these
parameters of the system to each of these subparts. In this way, it makes sense—if
one thinks about making these parts indefinitely small—to assign the corresponding
value of the parameter to each point of the system (which, indeed, is an idealization,
as one does not, nowadays, think of matter as a continuum. However, this idealization
is often useful for that category of problems to which thermodynamics is primarily
applied).

Examples of point parameters: temperature, pressure per unit area, density,
dielectric constant, etc., and, obviously, all functions of these parameters.
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“Additive Parameters”: one value of such a parameter is given to each system, as
well as to each of its parts, in any given state. However, the value of the parameter
given to the whole system is the sum of the values of the parameter of all the parts.
For this parameter, one can also use the name “quantity parameter” or “‘extension
parameter.”

We call a system homogeneous if all of its point parameters have the same value
at each point. This way we can say that the values of the additive parameters of a
homogeneous system are proportional to one another.

Examples of additive parameters are mass, volume, weight, and in many cases
energy’ (in contrast to the “specific” quantities: mass per unit volume or per Mol.,
which belong to the point parameters).

One can say that the point parameters characterize the state of the matter that
makes up the system, while the additive parameters are additionally determined by
the structure of the system.

(4]

§ 3. Conditions for equilibrium

The structure of the system can be such that the values of a particular point
parameter of the different parts of the system can be arbitrarily different from one
another, without having any influence on the equilibrium of the system. In this case,
we say that these parts are “isolated” with respect to this parameter. If an “adiabatic”
wall—a wall that does not allow for the transfer of heat—divides two parts [of the
system], then these two parts are isolated from one another with respect to temperature
(“thermically”).

If both parts are gaseous and are separated by an unmovable wall (such as
a fixed piston), then they are isolated from one another with respect to pressure
(“mechanically”).

If, however, the structure of the system is such that is it necessary for the main-
tenance of its equilibrium that the values of the two parts of the system are in a
particular relation to each other—*“Condition for equilibrium”— then we say that
these parts are “coupled” to one another “with respect to this parameter.”

Two parts that are in direct contact are clearly coupled with respect to all
parameters that have an influence on equilibrium.

The conditions for equilibrium have different forms for different parameters. As
such, the condition for equilibrium for a thermal coupling is

6t =1,
where 1) and T, are the temperatures of the two parts, respectively. For the mechanical

coupling, in the case of direct contact, is p; = p», where p; and p; are the pressure
per unit area in the two parts, respectively.

7Cf. §25.
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P | —mm——] P2

Sa

S
Fig. 1

[5]

However, this can be different for the case of an indirect mechanical coupling.
For example, when two gases do work on one another by mean of two differently
large pistons, that push on opposite sides of a spring (Fig. 1), then the condition for
equilibrium is

Fi = F,,

where F; = F, are the forces that both systems, respectively, exert on the spring. It
follows that

PiS1 = p2Sa.

Here, S and S, are the areas of the pistons.
If the system is made of two different metals that touch one another, then the
condition for equilibrium for the “electrostatic” coupling is

Vo=V, + a

where V, and V| are, respectively, the values of the electric potentials [of the two
metals] and a is the change in potential at the surface of contact of the two metals.

If two parts of the system that are in contact are made of one and the same
material but are in two different phase-states, then the condition for which no matter
is exchanged between one part to the other is, as we will see later (Ch. IX, § 59),
given by the equation:

u; — Ts; + pvy = up — Tsy + pv,,

where all letters represent point parameters.

§ 4. Contact and Distance couplings

In the previous paragraphs, we have only focused on “contact couplings,” in which
the two parts of the system are either in direct contact or are in contact by means of
other bodies. There are also other kinds of couplings that can destroy the equilibrium:
the “distance couplings.”

For example, a stone is connected to the earth by a “distance coupling,” if there
is no obstacle to its fall to the ground under the influence of the force of gravity.
Similarly, two electrical charges on two parts of a piece of metal are coupled distantly.
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(6]

Let us compare the mechanic contact coupling—the pressure of two gases on
a movable piston that divides the gases—with the distance coupling: the mutual
attraction of two gravitating bodies. If the pressures of the gases are the same, then
there is equilibrium, because both parts exert the same force in two opposite directions
on the same body—the piston. In the case of two gravitating masses that are at a
distance from each other, they each suffer from the effect of gravity only in one
direction and therefore must move (if no other obstacles are present).

§ 6. Spontaneous processes

A “process” starts if an equilibrium is destroyed. A process is a chronological
sequence of always new non-equilibrium states. Under certain circumstances, a new
state of equilibrium can be attained, and in this case, the process comes to an end.
N.B. In principle, this does not always need to be the case, as this example shows:
two quantities of gas, that partially fill a tube, are separated from one another by a
piston S and from the environment by pistons S; and S,. Two constant and unequal
pressures p; and py (p; > p2) act on the pistons S; and S,. If S is screwed on tight,
then the system can be in equilibrium. If one lets S be movable, then it will move in
the direction of the larger to the lesser pressure; at the same time, however, the outer
pistons will also move in the same direction, and the process will end only with the
destruction of the original system—if the piston S, shoots out of the tube: a new
equilibrium state of the given system is impossible!

The cause of the disruption of the equilibrium is the removal of the separation—
and the setting up of anew coupling between two parts of the system under the absence
of the corresponding conditions for equilibrium (or the setting up of a coupling
between the system and the environment, which corresponds to the same thing, as
the coupling now concerns a larger system).

To analyze the process, we can mentally divide each originally homogeneous part
of the system into a very large number of smaller parts [7]. The corresponding point
parameters will all be the same for all subparts of the system only for one instant after
the establishment of the appropriate kind of coupling: every value of the parameter
for each subpart that is located near the coupling surface will change immediately
afterwards (and in particular, the change will mostly occur in such a direction as to
balance the values of the parameters on both sides of this surface). This creates an
inequality between the parameters that lie on this surface and the layers on the other
side of the surface, which leads to a further change in the values of the parameters. In
this way, the disruption of the equilibrium state penetrates further across the subparts
of the system. If, however, a particular parameter in one of the subparts is changed,
then this causes a change of many other parameters that are functionally tied to
the original one. In addition, for fluids and in particular for gases, the difference in
pressure on the two sides sets each subpart in motion.

This way we obtain a state of non-equilibrium that has to be described by an
enormous number of values of the equilibrium parameters, and eventually by a corre-
spondingly enormous amount of components of velocity. How large the number of
subparts the system should be divided in is, naturally, unspecified: our description can
only be approximate; so the possible accuracy is limited by the fact that it is known
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that matter is not seen as a continuum, such that the ongoing division into subparts
would lead past a particular boundary to objects for which terms like “pressure” and
“temperature,” etc. would not be applicable.

If, however, we are satisfied by the approximate description sketched above, then
we can obtain a deeper insight into the nature of the thermodynamic phenomena and
better assess the limits of validity of the different laws (cf. Ch. VI, §§ 42-44).

In any case, we may not forget, that the domain of applicability of this kind of
description does not apply to all possible non-equilibrium states: for the case of very
turbulent changes of state, in which two streams of molecules move chaotically in
different directions in one and the same area, the terms “temperature” and “pressure”
lose their meaning even for not very small subparts.

§ 6. Graphic representation

It is useful to summarize the above by means of a graphic representation. We want
to illustrate the use of this method with the easy example 2, §1 of this chapter. We
assume, that the middle piston is diathermal.

Let us imagine that the system is in equilibrium. The common temperature of
both parts [of the system] is 7°; and the pressures are p? > pg ; the volume of the
first part is v?, and of the second part vg .

Since there is a relationship (equation of state) between temperature, pressure,
and volume of a homogeneous gas, any equilibrium state is totally determined if the
value of any one of the three parameters (e.g., t°, p¥, p9) is given.

We now want to represent these three independent parameters as perpendicular
coordinates of a three-dimensional space R3. Imagine that when such a state occurs,
both external pistons stay fixed, but the middle piston is movable.

In the first instant, the state can still be represented by the same point in Rj,
but immediately afterwards there is a change; in addition to the thermal coupling, a
mechanical coupling is created between the two parts, and an equilibrium is possible
only when p; = p,. The middle piston now is under the influence of the force

F = (p} - pY)Ss.

where S is the surface [of the piston]; it will start moving from the higher to the
lower pressure. This causes a compression and a dilation, respectively, in the very
thin layers [of gas] lying directly next to the piston. The pressures in these layers
change accordingly, and it is not the same as the respective pressures of the rest of
the two parts of the system. This causes changes in the densities of the consecutive
layers [of the gas], but it also causes changes in temperatures and the creation of
more or less significant velocities of each singular layer of gas taken as a whole (one
sees, how the approximative character of our description resurfaces).

[9]

Next, we want to observe a first, short interval of time of the process. The velocities
of the piston and of all the layers of gas are negligible in this case.

How can the state at every moment of this interval of time be represented
graphically?
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If we mentally divide out the system in N = N; 4+ N layers, so that we can assign
a value 1, and a value p; to the i-th layer, then we only need a 2 N-dimensional
space Ry for the graphic representation. Every instantaneous state of the system is
represented by a point and the succession of non-equilibrium states is represented
by a line—a “path”—in Ryy.

The original Rj is represented as a subspace of this Ryn, and in particular as a
“Diagonal space,” ifitis allowed to call each subspace such, which fulfills a particular
number of equations of the type

Pk=P1=....Tn=Tp,=...
We, therefore, have, after the establishment of the mechanical coupling that

disturbs the equilibrium of the system, the representational point leaves the
three-dimensional diagonal space, which fulfills the following equations:

;=t(i=12,..N) (@)
pi=pi=12,..Np) (b)
Di =p2(1, =N1+ 1,N1+2, ...N1+N2) (C)

The system was in the three-dimensional diagonal space in the first instant of the
process.

If the process is such that in the subsequent stages the velocity of all the layers is
also negligible, then the space Ryy is sufficient for the representation of the whole
process: the representational point then represents a path within this space.

We know that the process—whatever its intermediate states may be—will have,
given the described arrangement of the system, an end. Its last instant is given by a
new equilibrium state, and, in particular, by such a state that fulfills the following
equation:

P1=D2

in addition to equations (a), (b), and (c). [10] The endpoint of our path is in the
diagonal space R; of the subspace R3, which corresponds to the fact that the state of
equilibrium is determined by a small number of independent parameters for the new
structure of the system that was created by the new coupling.

If the velocities are significant throughout the process, then they have to be added
as parameters of state to the original ones, and the representational space should
correspondingly have more dimensions.

Itis clear how the general representation will look: if, at equilibrium, the system is
composed of many homogeneous parts and if the equilibrium is disturbed by the fact
that new couplings are created between k of the n independent parameters, whereby
the equality of those parameters is necessary for the equilibrium, then the total process
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will be represented by a path in Ry if it ends with a new state of equilibrium. The
start of the path will be in the diagonal space R, and the endpoint of the path will be
in the diagonal space R, .

§ 7. Infinitely slow, spontaneous processes

We now want to consider an idealized, extreme class of processes, i.e., the
“infinitely slow” processes. We will restrict ourselves only to those cases, for which
the establishment of a new coupling between two spatially separated parts (phases)
of the system is the cause of the process.

The investigation of such processes is relevant because it can prevent us from
confusing them with the so-called “reversible” processes, which also occur “infinitely
slowly.”

We will, once again, make use of example 2, § 1 of this chapter. Our system
will be both thermally and mechanically isolated from its environment. The latter
implies that both external pistons are immovable. The initial state is the same as the
one assumed in the above paragraph.

The process can be slowed down in different ways:

A. The frictional resistance during the movement of the piston can be arbitrarily
large. In this case, it will move arbitrarily slowly to the position that corresponds
to equal pressures [of the two parts of the system].

[11]

B. The friction can be negligible, but the slowing down is obtained by stopping
the middle piston arbitrarily often and for the corresponding equilibrium to be
reached: in this case, no fast velocities will develop at any stage, and the sum
of the intervals in which the piston will have to move to its final position can be
made arbitrarily large by having a large enough number of interruptions [to the
movement of the piston].

Obviously, there is no perfect infinitely slow process. Therefore, we cannot say
that the just described arbitrarily slow processes have an infinitely slow process as a
limiting case. But the properties of the non-equilibrium states that the system goes
through approach a continuous sequence of equilibrium states, which connect the
initial to the final state. When we use the term “infinitely slow” for the processes
described above, then we mean that the processes in question are sufficiently slow,
so that we can ignore particular deviations from the equilibrium states for each of its
states. For example, at some point in the previous paragraph, we have ignored the
velocities; we could have summarized this in the following words: “if we have an
infinitely slow process, then a Ry is sufficient for its graphical representation, since
the velocities can be set equal to zero.”

The equilibration of temperature between two parts [of a system] can also be
slowed down analogously.

However, we cannot ignore the following: however close every instantaneous state
can be to an equilibrium state during this infinitely slow process, the cause of the
process is the deviation of its parameter values from the values at equilibrium, i.e., the
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leap of the values at the boundary between the two parts [of the system]—something
that belongs to the structure of the system and each of its current instantaneous states.

Therefore, we will call all these kind of processes (slow ones but also not slow
ones) “spontaneous.”

[12]

§ 8. Forced changes of state

We now want to contrast spontaneous processes and “forced changes of state,”
which are caused by the disturbance of equilibrium due to a coupling of the system
with its environment.

The nature of the cause will be always the same: jumps in the value of any of the
intensity parameter, that violate the conditions of equilibrium. However, the number
of independent parameters that determine the newly established state of equilibrium
of the given system, remains, in general, the same as the one before the coupling:
such a process has definitely run its course when the values of the relevant parameters
of the given system and of the environment are equilibrated, not those [parameters]
of two parts of the system itself. Moreover, one can stop such a process by breaking
the coupling sooner.

While, for a spontaneous process, one assumes a change in the structure of the
given system (a new coupling between its parts), one can, with the help of forced
changes of state, let the system assume all possible states of equilibrium that are
compatible with one and the same structure.

A particular kind of forced changes of state are particularly important for (theo-
retical) thermodynamic investigations: those for which the values of the parameters
of the given system and of the environment, which is coupled through these param-
eters, almost correspond to the equilibrium conditions. Those have the following
characteristics: the difference between the initial and final values of the parameters
of the given system are arbitrarily small; the state of the system throughout the whole
process is virtually a state of equilibrium; the values of the intensity parameter, with
which the system is coupled to the environment, can be equated with those of the
environment without incurring in notable errors; the average velocity of the equili-

bration of the parameters — "]A—_z" —where q is the (common, of both systems][)] initial
value and q1 is the final value of the relevant parameters, and A¢ is the duration of the
process, is—in general—for the different kinds of parameters, smaller, the smaller
the difference ¢ — g between the two systems is at the beginning of the process and
also the smaller the difference ¢! — g is (as ¢' is between the values ¢ and 7) [13].
The graphical representation of such changes of state is a part of a curve in Ry, both
ends of which lie in R, in the subspace of the equilibrium parameters of the given
system, and whose remaining points lie very close to this R;,.

We will call these “elementary quasi-static processes.”

§ 9. Quasi-processes and quasi-static processes

In the following, we will occupy ourselves a lot with continuous sequences of
equilibrium states that join two given states of equilibrium. They will be represented
graphically by curves in R,,. Traditionally, they have been called “processes,” and in
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particular “reversible” processes. We will rather call them “Quasi-processes,” as—
clearly—they cannot be actualized by any real process; further, we want to explicitly
leave out the epithet “reversible” (see § 10).

Despite the fact that strictly a quasi-process cannot be actualized, one can never-
theless let the system assume an arbitrarily dense discrete succession of equilibrium
states that belong to the system, in such a way that, even throughout processes
that connect two consecutive equilibrium states, the state of the system is almost
in equilibrium: [this is achieved] by letting the system go through a sequence of
elementary quasi-static processes. We call such a sequence “quasi-static process” (cf.
C. CARATHEODORY, Untersuchungen iiber die Grundlagen der Thermodynamik
(Math. Ann. 67 [1909], 355)).

Because the velocity of an elementary quasi-static process tends to zero if the
differences between the parameters of its beginning and end points are shrunk,
the duration of the whole quasi-static process tends to infinity as the number of
its elements increases. A quasi-static process is therefore also an “infinitely slow”
process. However, the essential difference between a quasi-static process and an
infinitely slow spontaneous process should not be forgotten:

A. A quasi-static process is a forced process.
[14]

B. Itisnotasimple process, but a sequence of processes, for the realization of which
the system should be consecutively coupled to a sequence of external systems.
(Perhaps it might be coupled to a single system, but in this case, a change has to
occur to this system at each step, to adjust its state to the given system).

For later use, we will introduce the following terms: A spontaneous process,
whose initial and final state are equilibrium states that will be called a “complete”
process. A quasi-process, whose initial and end states are identical with the ones of
a complete spontaneous process, will be called an “equivalent process” to one of the
latter [processes described].

N.B. Obviously, one can assign to a given complete process infinitely many equiv-
alent quasi-processes. In the case in which the spontaneous process is infinitesimally
small (i.e., if the changes in the parameter x; are expressed by the differentials dx;),
then the infinitesimal equivalent process is uniquely determined—among all other
possible equivalent processes.

§ 10. “Reversible” and “Irreversible” processes

The notions of “reversible” and “irreversible” processes have played a prominent
role in the history of thermodynamics. Their use, however, is not unambiguous. We,
therefore, need to dwell on this a little.

We will call a process an “exact inverse” to a given process, if the system goes
through all the steps of the given process in an exactly reversed sequence (with
reversed velocity of the subparts, obviously).

We will call a process “reversible,” if its exact inverse process can also occur in
nature. Otherwise, we call [this process] “irreversible.” Since our everyday experi-
ences teach us that spontaneous processes only have one direction, these will also
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be called “irreversible.” It should be noted, however, that the interpretation of the
thermodynamic phenomena through the modern theories of the structure of matter
makes it conceivable, that, in time, such time periods should occur, during which
the course of the phenomena [15] should be (almost) inverse. Therefore, the “irre-
versibility” of spontaneous processes is better understood in the sense that these can
only have one direction in our lifetime.

We have maintained this sense of irreversibility also in the previous arguments:
we have always considered it self-evident, that the intensity parameters equilibrate
themselves, if they are given an opportunity through the establishment of a coupling;
we did not think that after such an equilibration the temperature of both parts would
change spontaneously, and that at the end of this disintegrating process, these parts
would have two different temperatures from the ones they had at the beginning of the
previous process! We will always acknowledge the fact that motion will be dampened
by friction or by the collision of non-elastic bodies and heat is created in the process,
and that in our lifetime, no corresponding exact (or nearly exact) inverse process
could be observed.

However, in any case, the name “irreversible process” does not have the
unequivocal meaning that it initially had.

This was only one of the meaning of this term: one uses the “reversible—irre-
versible” contrast also to contrast real processes with what we have called here
“quasi-processes.”

Since the possibility was acknowledged, that real processes may not have one and
the same direction for all eternity, the term “reversible” cannot be used anymore to
distinguish quasi-process from real processes.

There are other reasons why the choice of this distinction was not a fortunate one:
quasi-processes are not processes, so there is nothing [of this processes] that can be
reversed—unless, one wants to say that one can let them [quasi-static processes] run
virtually in both directions. However, this is also not forbidden for the sequence of
non-equilibrium states that a system runs through during a real process. If one does
not image an exact quasi-process, but an approximating quasi-static process, then
these are reversible in the same sense as all other real processes are. Correspondingly,
a quasi-static process that approximates a quasi-process is not exactly the inverse of
[the process] that approximates the reversed quasi-process: [16] for example, if the
given quasi-process constitutes a continuous flux of heat to the given system, then
the systems of the environment that are used [for this process], will have higher
temperature than the given system for the original direction [of the process], and
lower temperatures than the given system for the reversed direction [of the process].

Finally, one can talk about adiabatic “reversible or irreversible” processes in a
very peculiar way: if an adiabatic process leads a system from an equilibrium state
A to an equilibrium state B, and if there is another also adiabatic process, that can
link the end state B to the initial state A, then one calls the initial adiabatic process
“reversible.” If the initial change of state is a quasi-process, then it is reversible by
definition. Therefore, the question of reversibility only has meaning when it concerns
a real adiabatic process.
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For the following (ch. IV), it is very important to determine whether the possible
adiabatic changes of state from the end state B to the initial state A is a quasi-process
or a real process. We will announce here already, that the only important thing for
the derivation of the thermodynamic equations is the axiom that can be described in
the following words:

“When a system is taken by a real adiabatic process from A to B, then it cannot be
taken by any adiabatic quasi-process from B to A.” (Whether the initial real adiabatic
process is reversible, in the first here described sense of “reversible,” does not have
any influence on the conclusions regarding the derivation of the thermodynamic
equations.)

[57]

Sixth Chapter

Real Processes

§ 38. Completed real processes and equivalent quasi-processes

In the previous analyses we have talked mostly about quasi-processes and we
have set up relations that determine the properties of systems in states of equilibrium.
These properties have been the main topic of thermodynamic investigations (until
recent times at least), too. In order to learn anything from them, however, one has to
observe phenomena, i.e., real processes. Real processes, with all the properties that
distinguish them from quasi-processes, are also the objects with which technicians
concern themselves. In order to make a quasi-process accessible to experimental
investigation or in order to connect it virtually to thought experiments, we have to
assume that they are approximated by quasi-static processes. These are real, albeit
idealized, processes.

Previously we could therefore not leave real processes completely unmentioned.
For example, the difference between “equal” and “unequal temperatures” is based
on the possibility of real processes. At one point in Chapter III, which deals with the
concept of “energy,” we could not go on without considering an explicit non-quasi-
static process: [that point] when we were dealing with the concept of “quantity of
heat” (§19).

Furthermore, some questions about real processes will become clearer if, in addi-
tion, we observe certain quasi-processes. This is the case for the question about the
direction of real processes and about the change in entropy of adiabatic real processes.

The direction of a process can be characterized by stating the changes in energy
and entropy that accompany it. In order to be able to state these clearly, [58] one has
to express the quantities that change the different forms of energy as functions of
the equilibrium parameters, and the changes thereof, that belong to the starting state
and the end state of the process; assuming that the process in question is a completed
process. In this case, then, the changes in energy, and also in entropy, are the same
as in any equivalent quasi-process.

§ 39. Hypotheses of the third group

In Chapter II, §2, we already talked about a special kind of real processes—about
the transformation of energy into heat by mechanical contact coupling. Here, we
want to establish, through posing specific hypotheses, what can be assumed in the
most general cases about the trajectory of real processes.
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Hypothesis 11, 1: for a spontaneous process to take place, it is necessary, that at
least one equilibrium condition is broken (is not met anymore): that either particular
couplings are created between the parts of the system, where, in the previous state of
equilibrium, the corresponding parameters had values that do not suffice for the new
conditions of equilibrium, or that certain parts [of the system], among which there
are chemical affinities, are brought in direct contact; or that devices, that counteract
particular forces [that act at a distance (Fernkrdften)], are removed.

Hypothesis 111, 2: if conditions for the destruction of the equilibrium obtain, then
a spontaneous process actually begins.

Hypothesis 11, 3a: a spontaneous process always occurs in such a way that,
between the two coupled parts of the system, heat is transferred from the part with
the higher temperature to the part with the lower temperature.

Hypothesis 111, 3b: if, through a spontaneous process in an isolated system, the
energy of a particular kind A in one part [of the system] is decreased by the amount
IDULI, and in another coupled part is increased by the amount IDUZ|; or if energy
of kind B is decreased by an amount |DUg|, and energy of kind C is increased by the
amount |IDUc|, then it is always the case that

|pui| = |pUZ|+ Q@ @>0
(a7
IDUg| = IDUc|+ Q@  Q@>0

[59] where, in both cases, Q represents the quantity of heat that is created in the
system at the cost of ‘DUH and |DUg|, respectively. This also means: if

DU} <0,DU? > 0,then Q >0 } (18)

DUz < 0,DU; > 0,then Q >0

Naturally, the kinds [of energy] A, B, C are meant to be different from heat.

The equations (17) are to be understood in the following sense,—if one thinks
of these energy transfers to be isolated from the others — then there always exists
an equivalent quasi-process, which contains a positive heat transfer as one of its
constituting parts. It follows from hypothesis II, 2, that the heat transfer will also
be positive for infinitely many other equivalent quasi-processes: if the heat transfer
for a particular quasi-process is positive, then the change in entropy is also positive;
however, since the entropy is represented as a unique function of the equilibrium
parameters of the system, the change in entropy will be the same for all equivalent
quasi-processes.

The hypotheses that we have just established imply that, of two processes that are
the exact inverse of one another (see Chapter I, §10), only one is possible, namely
the one for which different forms of non-heat energy [von Wirme verschiedenen
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Energieformen] partly become heat, and for which heat, in the case of thermal
coupling, is transferred from the warmer to the colder part [of the system].

Therefore, as a consequence of the hypotheses of the third group, real processes
are “irreversible” in the sense that their inverse is impossible.

§ 40. Example

We want to explain the meaning of the equivalent quasi-processes for the calcula-
tion of the energy conversion on the well-known spontaneous processes of pressure-
equalization. The setup is hence given by example 2, Ch. I, §1, whereby, for
simplicity, we assume that the middle piston is diathermal, and therefore 7| = 7.
The initial pressures are unequal- p; > p,. The middle piston is released for a short
amount of time only, after which it is fixed again. The real process that we observe,
is therefore an elementary, complete process. The equally elementary [60] equiva-
lent quasi-process would be the following: one fixes the middle piston, but let the
two outside pistons be movable, and through this alteration one couples mechan-
ically each half of our system to the corresponding external system, and, further-
more, one thermally couples the total system, which is thermally homogenous, to its
environment. The following equations hold:

AQ1 =dU; + AAy,

AQr =dU + AAs,

where AQ =TdS and AA = pd v.

Since in our real process the system is assumed to be isolated, we have to take
into account that for the equivalent quasi-processes dU; + dU, = 0 is true, where
dv = —dv;. Finally, we obtain

dU =TdS1 +dS,) — (p1 — p2)dv; =0, 1i.e.,

T(dS) +dS) =TdS = (p1 — p2)dvy.

For both processes, the right-hand side of the last equation represents the quasi-
potential change in energy of the total system and the left-hand side: [represents] the
gain in heat energy. It is, however, instructional to note that the outward effect of
both of these forms of energy is different:

For the quasi-process, (p; — p2)dv; = AA is the work that the system exerts
outward; the expression TdS = AQ is the heat supplied from outside. For the real
process both AA and A Q are equal to zero. Therefore, for the real processes, we
have

(p1 — p2)dvr # AA; TdS # AQ; —prdvy = DA,
—p2dvy = +prdvy = DAy
TdS = AQ.
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§ 41. The concept of the reverse course of real processes

There is a view, according to which it seems credibly that the direction of real
processes that is observable today should not remain the same forever: the kinetic
theory of matter, which interprets the laws of thermodynamics as consequences of
the deeper laws of molecular movements, provides very satisfactory explanations of
the properties of the systems while in states of equilibrium and of the laws of quasi-
processes. However, concerning the preference in the direction of real processes, on
closer inspection, it becomes clear that [61] one cannot find a satisfactory explanation
for it, that it would, in fact, be consistent to accept that once in a while—over
enormously long intervals of time—such periods should occur, where the trajectory
of any phenomenon should have the reversed direction. The same conclusion will be
inevitable for any theory that treats the laws of thermodynamics as static results.

Of course, it would not make sense to categorically declare oneself for or against
this possibility, in particular since our laws of thermodynamic are mere extrapolations
from observations over a relatively small interval of time, and therefore cannot have
any claim of validity for eternity, and, furthermore, the static theories can only claim
an approximate validity—despite the services they have provided to the study and
discovery of different phenomena. However, it may not be superfluous to clarify the
logical relations between the laws of thermodynamics and the static theories. While
we do not know what we should think about the universe and its most distant future,
we have no excuse not to know what we should think about the theories built and
applied by physicists!

At this point, we want to clarify, what we should leave in place and what we should
change in the hypotheses that we have so far introduced to account for reversed
phenomena.

Imagine that a piece of the world—say, the laboratory—is recorded on film
[kinematographisch aufgenommen] (in every detail), and that this recording is then
rewound in the opposite direction. We want to discuss how a couple of phenomena
would appear in such an inversion.

I. A piece of glass is let go from a hand at a particular height. It accelerates
to the ground, breaks into many shards, which fall away from one another, and,
finally—due to friction with the floor—TIie scattered. The theory of kinematics implies
that their kinetic energy is transformed into heat. The inverse process, therefore,
begins, without being preceded by a disturbance of the equilibrium, with the inverse
transformation of the heat energy scattered on the floor and within the shards of
glass into kinetic energy, which [62] causes the shards to move, accelerate toward
one another in order to form an intact piece of glass, at which point it [the whole
piece of glass], starting with a significant velocity, flies upward in a decelerating
motion, where, at the appropriate point, an open hand closes around it.

If, however, the original phenomenon was the following: the piece of glass is
thrown upward by the hand and then caught again by the same hand, then the reverse
trajectory of the phenomenon—for those parts, where the glass is freely flying in
the air—is indistinguishable from its original trajectory: a free body, that is subject
to the influence of the gravitational force, and that at a particular point reaches zero
velocity, in both cases, will consequently accelerate downward.
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2. The equilibrium between two solid bodies, which have different temperatures,
is broken by putting them in direct contact with one another. Consequently, the
process of temperature adjustment begins, and [this process] ends when all parts of
the composite system have attained the same temperature (In this we assume, that
the whole system has been put in an adiabatic container).

The inverse process starts with this final state, whereupon the distribution of
temperature spontaneously starts to become heterogeneous, and in such a way, that
the largest inhomogeneity is created at the point of contact between the two bodies,
until the particular moment, at which the temperature in all the parts of one body
has reached one value, and the temperature [in all the parts] of the other body has
reached another value, i.e., those temperature values that they had at the beginning
of the direct process. In this instant precisely the bodies are then separated from one
another.

Should this last step of the inverse process not occur, then it does not at all follow
from the theory of kinetics that the difference in temperature between these two bodies
continues to rise: such a thing would not represent an inversion of any process that
has been observed to date! On the contrary, everything in this theory indicates that
even on the inverse trajectory [of the process], after this moment, a new process of
adjustment should develop—exactly as is the case for the inversion of the throwing
and falling motion of free bodies, which after the instant where they [the body] have
reached zero velocity, will succumb to the gravitational force and fall downward.

[63] It is a different question whether a more or less precise inversion of current
phenomena can offer a case, in which, after the setting up of a partially—homoge-
neous distribution of temperature, no separation of the parts [of the system] that have
different temperatures occurs: after all, we want to think of such an inverse process—
in connection with its environment, as a constituent part of the inverse process in
a larger part of the world! It is however—due to this theory and due to every other
statistical theory of thermodynamic phenomena—definitely possible, that such cases
occurred in a particular epoch, during which the trajectory of processes was not a
precise inversion of the current ones, and in which, nevertheless, the real process
partially had this inverse character.

§ 42. Hypotheses that apply to the inverse trajectories [of phenomena]

‘We now ask: for epochs with inverse, or predominantly inverse phenomena, what
would remain of the hypotheses that we set up [previously]?

Clearly, hypothesis III, I of the third group would lose validity, since most
processes would arise spontaneously from a state of equilibrium, without new
couplings that would destroy the equilibrium state having been established.

Hypothesis III, 3 should be changed in so far as all the signs in the inequalities
are changed.

In the case of precise inversions, Hypothesis III, 2 would not have any objects of
application, since the state in which two parts of the system are generally in equilib-
rium, but are coupled to one another by non-maintainable values of the corresponding
parameters, is a state of the process upon which a separation of those parts would
follow.



7 Translation from German: Foundations ... 159

In fact, the known statistical theories do not provide reasons to expect a period of
exact inversions [of phenomena]. If, however, we are talking about possible periods
of approximately inverse trajectories [of processes], during which also such cases
in which after the setting up of equilibrium of each of the coupled parts [of the
system] the coupling is not removed occur, then, the same adjustment processes that
we observe today can easily follow this momentary state: this scenario [65] is not
excluded by the statistical theories, rather, it seems to follow from them. Therefore,
we can say that for approximately inverse trajectories [of processes], hypothesis III,
2 would retain its validity ... in so far as objects of application for it are available.
However, in this case, the change of signs in the inequalities (18) in Hyp. III, 3
would not always, but only often, be necessary: hypothesis III would, therefore, lose
validity.

The hypotheses of the second group, which exclusively concern equilibrium states,
are clearly valid for all periods in which there are equilibrium states—i.e., states of
a homogeneous distribution of point parameters over a finite number of parts of
the system. Through a precise investigation of the lessons from the “second law”
in the sense of Ch. IV, we have arrived to the view, that it [the second law] is not
at all threatened by the prospect of an eventual reversion of real processes, as was
intended by the founders of thermodynamics and as is still the practicable [gangbare
Auffassung] view. All equations that are obtained with the help of the second law and
that establish the functional dependence of different quantities on the equilibrium
parameters also remain valid.

Finally, the hypotheses of the first group also remain untouched, since they—even
if they cover real processes—are independent of the direction of phenomena.

§ 43. The increase of entropy

The totality of the hypotheses of the third group implies that the entropy increases
for any real process in an adiabatically isolated system.

First, let us examine the case in which the process consists in the adjustment of
temperatures between two parts of a system.

LetT,! and Tﬂ1 be the temperatures of the two parts [of the system] at the beginning

of the process, and 7,2 and Tﬂ2 the temperatures at the end of the process, respectively.
LetTg > T and Tg =Tf
X)
or T2 > Tﬁz
depending on whether the adjustment process runs its course or is interrupted.
[65] Let the quantities of heat that are obtained during this process by each part be

AQ, and A Qg, respectively, for which, during every elementary step of the process,
it is the case that

AQ,+AQs=0; AQ, <O.
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In an equivalent quasi-process, both parts of the system are adiabatically isolated
from one another and are thermally coupled with the appropriate external systems,
through which they obtain the external quantities of heat A Q, and A Qg, respectively.
Since the total energy of the system at the end of the real process is the same one as
at its beginning, this also has to be the case for the equivalent quasi-process [A. Qu.]

Qu+ Q5 =0, %)

where

2

2
/ wdSa; O _/Tﬁdsﬁ.
1

1

Among all the possible quasi-processes [A. Qu.] we choose the one that is most
convenient for our calculations, non licet [not permitting] the one for which the
temperature of each of the parts of the systems changes monotonously. In this case,
we have

Qu = 04(S7 — S,): Qp = 05(S; — Sp);

where 6, and 6 represent the average values of T}, 7,7 and Ty, Tj, respectively.
From the inequalities (*), it follows that 6, > 6g, and therefore from eq. (¥%), it
follows that [$2 — 51| < [$3 = Sh| ... (+*%).

However, since Q, < 0; Qg > 0 and both 6,, 64 are positive, we have

2 1 . Q2 1
S2— 8y <0;82 -8} >0,

which together with equation (***) implies that, for a real process that only consists
of a heat exchange between two parts of a system, the sum of the changes in entropy
of both parts [of a system] must always be positive.

2) We now examine a process during which the heat exchange between the
different parts of the system is prevented, but other forms of energy can be trans-
formed into one another or can be exchanged between the parts [of the system]. If the
system is isolated from its environment, then no external addition of heat can change
its entropy. Hypothe51s II1, 3b, however, says that such a process can be replaced by
a quasi-process [A. Qu.], during which the [66] the system must receive a particular
positive quantity of heat Q. Then, we can write

r=1 r=1

R 2 R
Q>0;Q:Z/T,dS,:ZO,.(S,2—
1
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(6,—the average value of all temperatures achieved by this quasi-process [A.
Qu.]). Since 6, is always positive, and since Q, = 6, (Sr2 — Srl) > 0, in this case, we
also have

R
$?-8'=) (53-8 >0

r=1

Since the difference in entropy S* — §' is uniquely determined by the start and
end state of the real process (since these states are equilibrium states), (Hyp. 11, 2),
the sign of Q will have to be the same for all other quasi-processes [A. Qu.]—even
if the absolute values for different quasi-processes [[A. Qu.]] can be different.

3) Any real process, during which different energy transformations and energy
exchanges occur simultaneously, can be mentally replaced by a sequence of the
simple processes that we have just described, because only the final value of entropy
is relevant, and this [value] is uniquely determined by the end state of the process.
From above, it then follows that the entropy increases for such a process in an isolated
system.

4) What happens then, if the system is isolated adiabatically but not mechanically
from its environment? Will it not be able to decrease its entropy by releasing energy
in the form of kinetic energy? In §22, Ch. III, we discussed a characteristic example
of the transformation of pressure energy of gas into kinetic energy (case (c)). [In that
discussion] Thereby, we assumed, that a part of the pressure energy in the first part
of the system would remain in the form of kinetic energy in its different layers, in
order to then transform into heat energy—which would increase the entropy of this
part. It appears that in all cases, in which one part of a system performs work on
another part against a lesser force, the quantity of heat that is thereby produced is
distributed over both parts, and due to this, [67], the decrease in entropy through the
performance of work is overcompensated.

N.B. It is not without interest that there are spontaneous processes, during which
the initial stage [of the process] is accompanied by a decrease in entropy of the total
system: e.g., a quick evaporation of liquid (e.g., like the evaporation of the ethyl
ether in a vacuum) is followed by a strong cooling of the rest of the liquid, while
the evaporated molecules have a larger ratio of faster velocities than would be the
case in the previous state of equilibrium. Effectively, a separation of the system into
two parts of different temperatures occurs, which in itself implies a decrease in the
total entropy. In addition, the volume of the system increases, and this, in turn, leads
to an increase in entropy, which can easily overcompensate the original decrease in
entropy.

N.B. The increase in entropy is usually postulated under the general name of
“second law” of thermodynamics together with an establishment of such an entropy-
function whose differential is equal to the expression %. This amalgamation
[Verschmelzung] has to be attributed to the history of the discovery of entropy. In
the previous paragraphs, it was intended to reveal the logical gulf that divides these
two understandings. The form of the entropy-function depends exclusively on the
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holonomy of the equation A Q = 0, this equation merely connects functions of the
equilibrium parameters and their differentials, and is completely independent of the
particulars of real processes. It was shown here that those hypotheses to which one
can trace back the establishment of entropy and those ones to which one can trace
back the properties of real processes form two distinct groups. Here, it was there-
fore systematically avoided to connect the term “second law” with the “increase in
entropy.”

[68]

§ 44. Adiabatic real processes and their mathematical description.

We now ask the following question: How can one integrate these two facts—
the fact that the entropy remains constant during an adiabatic quasi-process, and
the increase in entropy during a real process—using the uniform mathematical
framework of the Pfaffic equations?

The example in Ch. IV, § 32 gives us a hint: a system that is not thermally
homogenous can indeed change its entropy during a process for which we have
A Q = 0 constantly because, for such a system, the trajectory for which AQ = 0is
not isentropic.

However, the process that we discussed there is only a quasi-process, which,
moreover, is not “adiabatic” in the traditional sense since each of the two parts of the
system is separately exchanging heat with the environment. However, the end result
of each elementary step, for which we have AQ = AQ| + AQ», is the same as if
both parts were isolated from the environment but were thermally coupled with one
another for a short time.

For a real process, however, the possibility of such an exchange of heat between
the smallest neighboring parts of the system exists permanently, since this is indeed
the one characteristic of a real process, i.e., that the system is not homogeneous with
respect to the different parameters.

Letusrestrict ourselves to the case in which the inhomogeneity is such that for each
sufficiently small part of the system each point parameter is virtually homogeneously
distributed. Then, as was described in Ch. § 1 5 [sic], the process can be visualized
as a trajectory in the high-dimensional space Ry. In this space, however, there are no
constant entropy hypersurfaces, therefore, in this space, one can connect with two
points, which belong to two different diagonal spaces Rfl, (S=C;y)and Rﬁ, S=0Cy)
of constant entropy, through a purely adiabatic trajectory. In fact: for a path element
in Ry, AQ is given by a sum over all small subparts which, in general, have different
temperatures:

R
AQ =) AQ,.

r=1

[69]

For this reason alone, AQ = 0 is not an isotropic equation, A Q is not equal to
a “TdS” term. Additionally, however, each term A Q, is more complicated than the
expression 7,dS,, if besides the terms X;,dx;,, which also occur in this case, other
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terms need to be added, which express the transfer of kinetic energy from a small
subpart to an adjacent one and the conversion of different forms of energy into heat
within each small subparts. In this case, the relation A Q, = 7,d S, will not be valid
for even a small subpart.

Let us clarify the above with the most simple example of the balancing of temper-
atures in a solid body imaginable. Imagine two metal rods, which have temperatures
Tl0 and T20 and have been laid next to one another in such a way, that they make up
a single rod, which is then isolated from its environment by an adiabatic container.

The ensuing process is then governed by the equation

R
AQ=) AQ, =0,

r=1

where AQ, = T,dS,, and R is an arbitrarily large number of layers, into which we
virtually divide the rod by imagining sufficiently close cross sections. In this case,
we can assume that, relative to one another, these layers do not have any velocities.
Clearly, our adiabatic equation is not isotopic, and this is consistent with the already
known fact that the entropy of this system will be larger at the end of this process
than at the beginning.

It is true that the current approach is valid only for particular and a highly ideal-
ized case of processes for which the assumptions of Ch. I, § 5 suffice. In this case,
however, [the approach] allows one to describe every elementary step of the real
process—which is not a completed process—through purely thermodynamic quan-
tities, independent of any theory about the internal structure of matter. (The kinetic
energy of the small subparts, which we thereby have to take into account, refer to
the relative movement of these parts as whole bodies against one another and are not
[70] the kinetic energy of the individual molecules, which is significant in the kinetic
theory).

From this approach, the following remarkable result is obtained: since the equa-
tion AQ = 0 is linearly homogeneous with respect to all differentials of the param-
eters of state and of the eventual velocities, it remains true even under the simulta-
neous change of the sign of all differentials. In other words, for this category of real
processes, we have been able to mathematically analyze the possibility of a change
in entropy for this category, but this analysis does not give any insight with respect
to the direction of real processes! As mentioned (Ch. VI, §41), statistical theories do
not provide an explanation of irreversibility either.

What has just been discussed include what seems to us to be the actual foundation
of thermodynamics. In the following, we shall investigate some applications of this
(as an aside, also in extremely systematic form), which are of general significance,
especially in the theory of cyclic processes, which have played such a significant role
in the discovery of the second law itself.

[83]

Chapter 8

Clausius Principle and Irreversibility
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§ 53. The efficiency coefficient in the realization of cyclic processes

In Chapter VII, § 51, we have listed the four different statements that express
the Clausius principle applied to cyclic processes. In the popular textbooks, only
the first, and occasionally the second, of these are found. The reason for this is that
quasi-processes are not treated as different from real processes; however, for the
latter, the third and fourth statements do not hold (as long as the hypotheses of the
third group are valid). We now want to examine in more detail why the directionality
and the energy transformations that occur during real processes affect the validity of
some of these statements.

In order for a system to carry out a real process that can be considered an approxi-
mation to a quasi-process, it is necessary that the values of the parameters of the
external systems to which [the system] is coupled for this purpose are slightly
different from the corresponding parameter values of the system itself. Moreover,
during the process, the system cannot be homogenous with respect to the coupling
parameters.

Due to these deviations from a quasi-process, the real gain in work for the
environment will not be

A =dUpli +dUpl;,

where dU p|; represents the quasi-potential change in energy of the system for that
part of the cycle, which exerts work outward, and dU p|} represents the same for that
part, where [the system] receives work from the outside, instead, it will be a smaller
value A. However, we should view the relationship of this quantity to the quantity
of heat Q, that is emitted to the environment as an efficiency coefficient: [84]

Ok =

S|

instead of %. It will, therefore, be smaller than the one calculated for a cyclic
quasi-process.

§ 54. Realization of Carnot processes

It will suffice for the clarification of our claims that we restrict ourselves to Carnot
processes. However, how should one understand an “isotherm,” if, as we have seen,
at any moment of the process, the system is not in a complete state of equilib-
rium? Clearly, we should now interpret the two temperatures T' and T? of the two
“isotherms” to be the temperatures of the two external reservoirs, assuming that
they are sufficiently large, so that one can assume that their temperatures are not
influenced by the coupling to the given system. The real process of our system will,
therefore, run within tighter limits than the ones that we will measure for the external
systems. The pressure that the system exerts toward the exterior—for that part of the
cycle where it performs positive work—will, as a consequence, be smaller than in
the corresponding ideal Carnot process; the pressure against which it will act, in
order for the corresponding geometrical parameter to change (in the easy example,
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so that the piston can move), will have to be even smaller, with the result, that the
positive work that has been exerted will be less than in the ideal case. One can easily
convince oneself that for the part of the cycle during the system will do negative
work, these relationships will be reversed. Therefore, the total positive work done
will be less than calculated for the ideal Carnot process. If the temperature- or pres-
sure differences between the given system and its environment are not very small,
then—in principle—one cannot guarantee that the system, once it has received a
positive quantity of heat Q; from the environment, has not given the same value
Q> = Q to the environment and that therefore the exerted work is zero. We see,
therefore, why the third form of the Clausius principle becomes invalid!

We leave it to the reader to convince themselves that the validity of the fourth
form [of the statement] can also not be guaranteed anymore.

[85] Let us turn our attention to the consequences that the inversion of all
phenomena would have and, as an example, let us observe the inversion of a real
Carnot process, in which heat is converted into work. For the inverted process, two
things would occur: the transfer of a particular amount of work A into heat, and the
transfer of a quantity of heat Q, different from zero from a lower temperature T?
to a higher temperature T'. If for the case of the directed process, none of the three
quantities can be zero (first form of the Clausius principle), then they can also not
be zero for the inverse process. This, however, amounts to the fourth form of the
Clausius principle.

One can easily convince oneself that the third form can be recovered from the
examination of the inversion of a Carnot process during which heat from a lower
temperature is transferred to a higher temperature, to which the second form of the
Clausius principle applies.

In contrast, during the inverted trajectories of all phenomena, the first and second
forms of the Clausius principle prove to be uncertain, since the conversion of heat
into work in this case is accomplished by means of a Carnot process that is the
inversion of a process during which work is done on the system by the environment
and during which it is not certain whether a non-zero quantity of heat Q, is brought
from a reservoir of lower temperature to a reservoir of higher temperature. The analog
is true for the case in which heat is brought from a lower temperature to a higher
one: it will be uncertainty, whether during this the system will receive heat from its
environment. Therefore, the two first forms of the Clausius principles appear to be
invalid.

Concerning the efficiency coefficient, for the case of inverse trajectories, the value

T]T_,Tz will not represent the upper but the lower limit. It will be the case that

T1_ T2

1> Ok >
Tl

[86]

§ 55. The real role of irreversibility in the theory of efficiency coefficients.

The speculations about inverse processes—regardless of whether one believes
them to be possible or not—are in any case instructive in so far as they show us the real
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role that the irreversibility of real processes plays in the Clausius principle: without
the one-sidedness of all real processes for a given period (i.e., if any real process
could run once in one direction and another time in the opposite direction), then
absolutely nothing would remain from this principle (if applied to real processes)! In
time periods during which one-sidedness is present, two of the four statements hold
up; which ones these are—the first two or the last two—depends on the direction
of real processes. On the existence of the [integrating denominator] I.N. of AQ,
however, irreversibility does not have any influence.

[125]

Appendix III

Boltzmann’s H-Theorem

§ 1. The equating of the H-function with the S-entropy-function, which was
discussed in appendix II, is based on the assumption of the Boltzmann—Maxwell
distribution (“B-M”)

fz = foe™ (%)

for a system at equilibrium. Boltzmann himself derived this formula from the
equation:

= —a[(fif2~ fsf)(0g fi fo — log fs fi) dO (H)

which describes the temporal change of the H-F [H-function] of an isolated system,
if this system is not in an equilibrium state and if it changes its state in response
to the movement of its constituting molecules. Since both factors in the integral in
the formula above change their sign simultaneously, from eq. (H;), it follows that
an isolated system can perform only such spontaneous processes for which its H-F
strictly decreases, unless it has reached a distribution that satisfies the equation

fifa—fafa=0 (Ha)

Both the B-M distribution, and, in turn, eq. (H;) follow from this equation, the
latter implies that, after the attainment of the B-M distribution, the thermodynamic
state of the system remains unchanging, that it has reached its equilibrium state.
This is the content of the “H-Theorem” in its original form. It, therefore, delivers
two important results: I) the distribution of molecules over the coordinate- and over
the momentum-states in the equilibrium state of the system and 2) the claim of the
one-sidedness, i.e., the “irreversibility,” of processes in an isolated system. If one
extends the equating of H-F with the entropy S for all possible (including turbulent)
processes, then one obtains an explanation for the increase in entropy [126] during
all real processes, as follows from the hypotheses of the III group (Chapter 6 of this
book), if one only accepts the first form of these hypotheses, as is indeed customary
in physics. Then, these hypotheses appear to be proven from within the framework
of kinetic theory.
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§ 2. Shortly after its publication, objections were raised against the H-Theorem,
most importantly, Zermelo noted that the premises from which Boltzmann’s calcula-
tion started (i.e., that the totality of the molecules of the system had constant energy
and that these molecules were subjected to conservative forces only) have as a neces-
sary consequence that, in time, the system will return arbitrarily closely to each state
that it had previously taken up, in other words, that the trajectories of the processes
in such a system should not be one-directional, but quasi-periodic (if not even occa-
sionally exactly periodic, up to a relatively negligible number of cases in which they
can be asymptotic). Indeed, an assumption has been made during the derivation of
eq. (H;), whose general validity could not be proven: the “Stosszahlansatz” (“STA”):

Af, = AtBf, (Hs)

which states that the number of molecules of a particular kind A f, (defined by their
coordinates and their moments) that, within a given small time interval At, change
their velocities through collisions with other molecules, is proportional to the number
of molecules of this kind f, that were present at the beginning of this time interval.

If any changes of the H-F were to be quasi-periodic, then it would clearly be
impossible to satisfy this assumption [STA] without exceptions.

Boltzmann also explained that this assumption would provide only the most likely
equation for a given number of collisions; that, certainly, sometimes there could be
deviations from it; that, however, compared to the cases in which the assumption
was satisfied, these were extraordinarily rare, such that the equation (H;) would be
overwhelmingly probable. (This was the signal for the now widespread use of the
“probability”-approach and for the pushing back of the deterministic-mechanical
premises upon which [127] the realization of the quasi-periodic character of all
phenomena was founded!).

Under the new meaning of the H-Theorem, the temporal course of the H-F of
an isolated system was represented by a curve that is composed of extraordinarily
long sections of straight lines, which lie on the minimal height H,;x, and which are
separated from one another by, more or less, non-homogeneously distributed peaks.

The possibility of an equilibrium [state] that would last indefinitely should then
be given up: similarly, the B-M distribution could not persist indefinitely; however,
it could be seen practically as a rest state—as an “equilibrium state,” since it could
be reproduced itself so extraordinarily often.

§ 3. If the H-F was still identified with the thermodynamic entropy S, then one
would have to revise the foundations of thermodynamics, and, in particular, one
would have to allow that (in the language of this book), in addition to the first form
of the hypotheses of the III group, for certain time intervals, the second form should
be also valid.

This was already something unusual; however, another difficulty was added to
this. It should be said immediately, with emphasis, that this difficulty is based on a
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misunderstanding: since the discovery of the function “entropy”’-function by Clau-
sius, one was used to tie the existence of the integrating denominator (“IN”) of the
expression

AQ =dU + AA (H)

which was discussed in Ch. (IV), to the irreversibility of real processes; the possibility
of the existence of reversed trajectories of real processes was therefore seen as a threat
to the “second law” of thermodynamics, whereby, under this name, one understood
without differentiation, both the creation of entropy (given as a function that was
defined by the equation

Al
Z=as (Hs)

) as well as the increase in entropy in the case of real processes.
[128] In Ch. VI of this book, we have seen that equation (Hy) is valid only for
quasi-processes (for real processes, we should replace it with the equation

AQ =AU + B4 (Hy)

). The IN only refers to equation (Hy), its existence is independent of which direc-
tion real processes run. Therefore, the possibility of the reversion of real processes,
which is implied by Zermelo’s objection, is not a threat to those equations of
thermodynamics that are based on the existence of the IN.

Nevertheless, Clausius’ suggestion was so influential that even today, the “second
law” is identified with the law of the “increase in entropy” by physicists. Even
Carathéodory, who contributed so much to the clarification of thermodynamic
concepts, formulated his “Axiom II,” to which he reduced equation (Hs), in such
a way that it encompassed both quasi-processes and real processes. (When I made
him aware of the fact that it would be less ambiguous, if his axiom were only applied
to quasi-processes, a longer correspondence started between us; even when, in prin-
ciple, he had conceded to my point of view, he did not want to change the formulation
of the axiom, since it seemed to him to be more “physical”).

§ 4. Due to the prejudice mentioned in § 3, a succession of efforts (building on the
new meaning of the H-Theorem, therefore building on the new form of the H-curve)
to look for such interpretations, under which the decrease in H would seem more
probable than its increase, began. In the best case, these could only be explanations
of the subjective attitude of the researcher, who, if thinking about a state of the
system that is different from a state of rest, finds it difficult to imagine that the
system would subsequently depart even further from this state of rest. (Among these
kinds of work one can also count the article by P. and T. Ehrenfest; “Ueber [sic]
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zwei bekannte Einwdinde genen das Bolltzmannsche [sic] H-Theorem, Phys. Zschr.
8, [1907], p. 316).”

Under no circumstances could one deliver a proof of something that, from the
beginning, was ruled out by the accepted form of the H-curve. (See T. Ehrenfest-
Afanassjewa, On a misconception in the [129] probability theory of irreversible
processes, Acad. Amsterdam Vol. XX VIII [1925] N 8-9).

The thought of Boltzmann, that the STA was overwhelmingly probably, seemed
very seductive. In fact, one can assume this without contradicting any of the afore-
mentioned objections to the original form of the H-Theorem! There is no reason to
deny that the H-theorem is overwhelmingly probable. But this need not be confused
with the claim that a reduction of the H-F is more probable than an increase: the over-
whelming majority of time intervals during which STA is realized coincides with
those intervals during which the B-M distribution holds (the concept of the “evenly
disorderly” distribution, on which Boltzmann based his STA, seems to correspond
best to the B-M distribution). Among all the cases during which the H-F changes its
value, it is clearly that at least half [of the cases], namely, those time intervals during
which H increases, are inconsistent with the STA. Therefore, we are justified to use
the calculations of Appendix II in order to explain equation (Hs), which expresses
the actual content of the “second law,” thereby starting from kinetic theory, and, as
a result, we can deny—according to the same theory—the permanent irreversibility
of real processes.

§ 5. It was inevitable that some physicists were unhappy with the bogus proof
[Scheinbeweis] of the tendency to decrease the H-F, as discussed in § 4. So, the
objection to the assumption of a mechanical determinism for all processes by Zermelo
was well founded. One expected that the interpretation of the phenomena in terms
of quantum mechanics, where determinism is fundamentally given up, would lead
to a reconciliation with irreversibility. All that could be achieved, however, was
the claim that the function that in this interpretation was supposed to be analog
to the H-F could only ... increase extraordinarily seldomly. This, however, is not
fundamentally different from what the kinetic theory had produced. One can well
say that this was also to be expected a priori: if one assumes that the values of a
quantity are determined by chance and that the frequencies of the different values
are proportional to the relative probabilities of these values, then it follows from this
that during an infinite time interval, each value for which the probability is different
from zero [130] will have to recur, that, therefore, any changes in this quantities will
have to be quasi-periodic.

§ 6. If one accepts the conclusions of the last paragraphs, then there arises one
question, which has a great meaning for the progression of physics: all of our exper-
iments and all predictions of the trajectories of phenomena are based on the assump-
tion of irreversibility (we expect that the temperatures of two bodies that touch one
another will become one and the same, we do not expect that, within a foreseeable
time interval, they will assume different temperatures again, and vice versa); how is
this to be reconciled with the quasi-periodic trajectories [of phenomena]? One can
answer this question within the framework of kinetic theory. According to this theory,
every state of a system is completely determined by its previous state; and this is also
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the case for an arbitrarily large part of the observationally accessible world; (If one
suddenly moves the middle piston of example 2 Ch. 1 §1 to one side, so that behind
it one creates empty space, then the expansion of the gas into the enlarged space has
to follow for purely deterministic reasons, and it is unconceivable that, after this,
the gas could move all of its mass immediately in the opposite direction). Now, we
know from everyday experience that the world that surrounds us is currently in such
a state; that, as all processes proceed in the direction that is familiar to us, it is incon-
ceivable that an arrangement of molecules that would cause reversed trajectories of
the phenomena would suddenly occur. One can formulate it thusly: the macroscopic
laws have a certain “inertia”’; they cannot change unexpectedly.

If one asks: what should one think about the fact that we were born into such
a period during which changes in entropy during real processes always lead to an
increase in entropy and neither to a decrease nor to an occasionally change in direc-
tion? Then this is the answer: it is not a coincidence, our organisms are constituted
such that they can only evolve and develop under the circumstances that exist during
the current state of the world. What it will look like, when the period of reversed
trajectories[of phenomena] begins, [whether] combinations of molecules that are
similar to our bodies will then occur, while experiencing changes [131] that run in
the opposite direction—this one cannot answer easily: one should not forget that
in all our discussions there has been no mention of exactly reversed trajectories of
phenomena: “quasi-periodic return” only means that, after a finite amount of time,
the system has to come close to a state that it had taken up earlier; the order in which
states follow upon another is not determined by this statement.

If, however, we consider a chance to be the ultima ratio of all phenomena, then
we do not have any answer to the question we have asked above: in principle, there
is no reason to exclude arbitrary jumps in state! Even worse, it is astonishing that the
world crawls so unexpectedly slowly toward the overwhelmingly probable state of
rest (of general homogeneity), if, at any moment, it could jump to it!

Translation from an article appearing in Zeitschrift fiir Physik, 33,933-945, (1925)

Note: in this translation, the symbol A (Arbeit) has been replaced by W (work), an
apparent misprint in the last equation (dQ = TAS) of section 2 has been corrected,
and the name Caratheodory to Carathéodory.

On the Axiomatization of the Second Law of Thermodynamics

Tatiana Ehrenfest-Afanassjewa

Abstract:

A conceptual analysis of the second law of thermodynamics is carried out in
connection with an investigation of Carathéodory. It will be shown that the law can
be reduced to two groups of logically independent axioms. One of these groups
applies to the properties of bodies in equilibrium and the other concerns the laws of
irreversibility. This shows that the Thomson principle and the Clausius principle do
not have the exact same axiomatic structure.

Carathéodory’s® attempt to axiomatize thermodynamics seems to be a unique,
yet particularly valuable attempt. This attempt can be assumed to be generally

8C. Carathéodory, Untersuchungen iiber die Grundlagen der Thermodynamik. Math. Ann. 67, 335,
1909.
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known after the explanation that M. Born’ has given of it in the “Physikalische
Zeitschrift.” Regarding what we are concerned with here, Carathéodory has achieved
the following: he has reduced the existence of the integrating denominator for the
expression dQ = dU + dA, and therefore also the existence of Entropy, to a simpler
axiom than the second law (“Axiom II”’). By invoking the theory of Paffian equations
(which he also complemented with an essential Theorem) he has provided clarity
to the existing relation that was looked for in vain in the previous derivations of the
integrating denominator dQ. He has further shown according to what general mathe-
matical reasons the integrating denominator has to have a part that can be separated as
afactor, which is a pure function of temperature and represents absolute temperature.

These results have served as a starting point for this study. However, the approach
here is different from Carathéodory’s, most of all concerning the role of irreversible
processes. The aim, here, is to obtain a deeper understanding of the second law by
concentrating exclusively on reversible processes.

§ 1. We first observe that a thermodynamic system in equilibrium is defined in
terms of a finite number n of parameters, that we will call xy, x5, ... x,,.

Following Carathéodory, we will call a continuous series of equilibrium states a
“quasi-static” change of state.

We assume that the concepts of “internal energy,
10

9 <

the quantity of heat added to

the system,” “temperature” are known.
We have

dQ = dU +dW = Yidx; + Yodxy + ...+ Y,dx,,

where dQ is the quantity of heat added to the system in an infinitesimal quasi-static
change of state, dU is the change in internal energy, dW is the work exerted by the
system and Y; (i = 1, 2, ..., n) are functions of the parameters of state.

We say a system is “thermally homogeneous” if all of its parts are coupled to one
another, in such a way that at every moment of the change of state they have one and
the same temperature.

We say a change of state is “adiabatic,” if the infinitesimal changes in parameters
satisfy, without exception, the equation

Yidxi + Yodxo + ...+ Y,dx, = 0

throughout the process.!! Otherwise we call the change of state “not-adiabatic.”

M. Born, Kritische Betrachtungen zur traditionellen Darstellung der Thermodynamik. Phys. ZS.
22,218 und 282, 1921.

10The critically examined determination of these concepts can be found in the above-cited work of
Carathéodory, and this discussion will be ignored in this paper. See also C. Carathéodory: Uber die
Bestimmung der Energie usw. Berl. Ber. 1925.

"This does not imply that the system has to be adiabatically isolated from its environment. Think of
a system composed of two gases that are separated from one another by a moving and adiabatically
isolating piston. One can let this system undergo a change of state, throughout which dQ = dQ;
+ dQ> = 0 is satisfied constantly, but dQ1 = —dQ; # 0, and both parts of the system, that are
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§ 2. Axiom A (Entropy Axiom). If the integral ]2 d Q is non-zero along a quasi-
static path that connects states 1 and 2 of a thermally homogeneous'? system, then
the system cannot be brought from one of these states into the another along an
adiabatic quasi-static path.

It follows from this axiom that, in an arbitrarily small neighborhood of every state,
there are always adiabatically inaccessible states.!® As Carathéodory has shown, the
existence of the integrating denominator of dQ and of the entropy can be derived
from this fact.

With this result, however, one has only accomplished that the expression for dQ
can be reduced to the same form as the one for the other terms of the identity.

dQ — Y]dxl — de)Cz — ... Y,,dxn = 0,
namely to the form of a product of the functions of state with a differential:
dQ = TdS.

We can say that the Axiom A suffices to derive the theorem of the existence of
entropy. The second law of thermodynamics is however not yet exhausted.

What is the second law? We know two typical formulations thereof: one by W
Thomson “no perpetual motion machine of the second kind is possible,” and one by
Clausius: “in a cyclic process, it is impossible to transform heat into work without
simultaneously extracting a quantity of heat from a warmer to a colder body.”

We will see, that these two formulations are not equivalent.

§ 3. In order to derive the law of W. Thomson, it is necessary to add two more
axioms to Axiom A.'4

Axiom B (Coupling axiom). Only one kind of thermal coupling is possible.

We mean by this that when two systems are coupled with one another in such a
way that—maintaining equilibrium—they can exchange heat, the exchange of heat
is only possible if the two systems have the same temperature'® (and not, instead,
any other function of state), and

adiabatically isolated from one another, respectively, take this quantity of heat from and transfer
this quantity of heat to their environment.
12See §5 of this paper.
130ne means “unattainable by means of a quasi-static adiabatic process,” as only this is necessary
for the definition of entropy.
14(Annotation made in the correction of this paper): it would have been better to let the axiom of
uniqueness precede the coupling axiom.
15 A counterexample is given by the case of the coupling “after the term dW,” e.g., by the coupling
of the work done in order to change the volume of a gas (Druckarbeit): two systems can exchange
work in such a way that either the pressures are equal, or otherwise only all the forces that they
exert on one another are equal without the pressures being equal.

Due to this state of affairs, one can extract work from a reservoir of constant pressure (and
consequently transform it into heat):
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Axiom C (Uniqueness axiom). The integral [ dS along a closed path is always
equal to zero.

Axiom B is necessary, otherwise one could obtain a value [ TdS # 0 along a
closed path even if the system exchanges heat with only one heat reservoir of constant
temperature 7. This means that, in a thermodynamic cycle, one could extract heat
from a reservoir of constant temperature and transform it into work.'6

Axiom C is also necessary, because without this axiom one could conceive of a
thermodynamic cycle in which the system exchanged heat while having the same
constant temperature 7 as the heat reservoir the value of the integral [ dQ =T, [ dS
would be non-zero, because of the possibility that [ dS # 0.!

Axioms A, B, and C are also sufficient for the requirement that we need more than
one heat reservoir to obtain work from heat in a thermodynamic cycle: in fact, using
these axioms, one finds that [ dQ becomes zero when one allows heat exchange
with only one reservoir.'®

Fig. 1.

Let the sifstem has to be a quantity of gas isolated by two movable pistons a and b, which are
of the same size. The reservoir consists of an infinitely large quantity of gas that is enclosed by two
pistons 1 and 2 of different size. One can, alternatively, let piston 1 press on piston a and piston 2
press on piston b. In the first case, we have dW = p;Sdl for the System and dW' = pS,dl’ for
the reservoir, where S and S are the cross sections of piston a and 1, respectively, p; and p are the
pressure values of the system and of the reservoir and d! and d!’ the displacement of both pistons.
In the second case, we similarly have dW = pySdl and dW' = pSydl’.

Clearly, we will have dl = dI’. Since, however, we need to have dW = —dW’, then

p1S = pSiand p§S = pS,.

With the help of this couplings, we can let the system carry out the cycle represented in Fig. 1.
The quantity of work obtained in this cycle is

B D B D
—{fp15d1+fpzsdl} = —{mfdv-i-mfdv} =—(p1 — p2)(Vp — Va).
A c A c

This quantity of work is positive and is obtained from a single reservoir of constant pressure. P.
Ehrenfest has brought the significance of the ambiguity of the types of coupling in this context to
my attention.
16See the analogy in the previous footnote.

Tt is easily accepted that for T # O the coefficients ¥; do not have any singularities, which could
be a reason for the ambiguity of the function S. If the value of the coefficients ¥; vanish when the
absolute temperature has the value zero, then the differential dS can produce an indeterminacy of
the type (% = g), for which S would become ambiguous. Moreover, if the absolute temperature
has value zero, this would also give a reason for the breakdown of the formulation of Thomson’s
formulation of the law despite the validity of Axiom C. In fact, if one could set to zero the temperature
of the colder reservoir in a Carnot cycle, then one would have O, = f dg =0 f dS =0(Sp—Sa),
where the difference of the entropies would be finite.

18 Assume we reach the value zero for absolute temperature. Two types of attitude can be held
toward this value for absolute temperature: either one declares this value is unattainable by means
of a special axiom, and in this case Thomson’s (and Clausius’) principle holds for “for all attainable
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§ 4. Axioms A, B, and C are necessary in order to obtain Clausius’ Plrinciple,19
however, they are not sufficient. In order to have a complete justification of this
principle, the following axiom is also necessary:

Axiom D (Temperature Axiom). The absolute temperature has one and the same
sign for all states.

As a matter of fact, without this condition, one could carry out a Carnot Cycle
which would contain one isotherm with positive and the other with negative absolute
temperature. In this case, it would be possible to extract heat from both reservoirs?’
and in the process of transforming heat into work, no heat would go from a higher
to a lower temperature, as is required by Clausius’ principle.

It is taken as self-evident that the absolute temperature has an invariable sign.
We can see from the above discussion, how this property is essential for Clausius’
principle.?!

On the other hand, Axiom D is not necessary for Thomson’s principle, as this
principle only says that in order to turn heat into work one needs more than one heat
Ireservoir.

states,” or one declares that the principle holds “for all processes in which the value zero for absolute
temperature is not attained.”

19The fact that the existence and the meaning of entropy contained within this principle follows
from its derivation from the second law, which Clausius provided himself. Further, it follows from
axiom A and C that two adiabatic paths W, and W, that follow a part of an isothermal path from
the two ends a and b, and cannot have any point in common. If one wants to perform a cycle, that
contains the isotherm ab as one of its parts, then the two adiabatic paths W, and W}, have to be
connected by a non-adiabatic path. And although this non-adiabatic path might be an isotherm (cd),
then it cannot have the same temperature as ab (otherwise we would again have

b d
[dO =T [dS+ T [dS=Ti(Sp— Sa) +T1(Sqd — Sc) =0
a c
because S, = S, and S, — Sy). In order for the heat to be emitted to a reservoir that has a

different temperature 7> # T along the second path—as is required by Clausius’ Principle—it is
impossible for this reservoir and the system to have different temperature. Axiom B is therefore
necessary also in this case.
20 Analogously to how one can extract work from both “work-reservoirs,” as is represented in Fig. 2.
Imagine a coil that tends to expand with higher temperatures and to contract with lower temperature
within the lengths (/;12).

V-3

Fig. 2.
21p the interpretation of absolute temperature in classical statistical mechanics, it naturally follows
that this quantity can only be positive, in so far as it is the mean kinetic energy of the molecules.
However, whenever one is compelled—e.g., because of quantum theory—to deviate from this
interpretation, Axiom D requires another special statistical interpretation.
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We, therefore, see that the two principles do not say the same thing and that
one cannot derive neither Thomson’s nor Clausius’ principle from the existence of
entropy alone.??

§ 5. Remark. Axiom A is valid only for thermally homogeneous systems. A
system that is made up of two (or more) parts that are adiabatically separated from
one another, but coupled by pressure and have different heat capacities [939], may
very well go from one state to another quasistatically and adiabatically, even if these
two states cannot be linked along an adiabatic path (for which f dQ # 0). Indeed,
the expression

dQ = c1dTi + pdvi + c2d Ty + pdvy

does not have an integrating denominator, even if both parts of the system are ideal
gases.”? If there were such states in the immediate vicinity of every state, then
the above expression would have an integrating denominator—as Carathéodory has
shown.?* From this we see that by changes of state that satisfy the equation dQ = 0
the system can reach arbitrary states in the vicinity of its initial state, even those
states that can otherwise be reached when d Q # 0.

Nevertheless, even such a system obeys Clausius’ principle. This can be easily
derived from the condition that f dQ # 0 for a closed cycle, combined with the fact
that, along the same path we must have i—%‘ =0and [ fl—% =0.

§ 6. Four equivalent formulations of the “second law for quasi-static processes”
follow simultaneously from axioms A, B, C, and D.®

In a quasi-static cyclic process

1. heat cannot be transformed into work, without simultaneously transferring an
equivalent quantity of heat from a warmer to a colder body;

2. heatcannotbe transferred from a colder to a warmer body, without simultaneously
transforming an equivalent quantity of work into heat;

3. work cannot be transformed into heat, without simultaneously transferring an
equivalent quantity of heat from a colder to a warmer body;

4. heat cannotbe transferred from a warmer to a colder body, without simultaneously
transforming an equivalent quantity of heat into work.

The last two formulations show that the second law alone does not imply any
dissipation of energy. One can learn even more by considering these formulations

22This also explains why the various attempts to construct analogies to the second law could not be
carried out completely.

23The condition for integrability is, in fact
Yl(% - %) +Y2<% - %) +Y3(% — %) =0
for the Pfaffian expression for three parameters. In our case, however, this condition is violated
when ¢| # c.
HL.c.
25 The note by Arthur E. Ruark, “The Proof of the Corollary of Carnot’s Theorem” (Phil. Mag. 49,

584, 1925) has appeared during the writing of the present work. In that work, Ruark also points at
the possibility of the latter two formulations.
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simultaneously, if we want to give an account of the relationship of the second law
to the irreversibility of natural processes.

§ 7. Imagine, next to the “normal” world, a “reversed” one, in which all irreversible
processes have the opposite direction. Carry out one and the same Carnot cycle in
both worlds and imagine that in both cases the two heat reservoirs are not completely
isolated from one another. (For the sake of simplicity, assume that this is the only
cause of the irreversibility of the process; this will suffice to clarify the essential
aspect of our example.)

In the first case, a quantity Q' of heat will seep from the warmer to the colder
reservoir during the cyclic process. The actual quantity of heat that would be trans-
ferred to the colder reservoir will not be equal to the quantity Q», that would be
transferred during the cyclic process if the reservoirs were completely isolated (with
a given d W). Instead it would be O, + Q'; likewise, Q' would be extracted from the
warmer reservoir in addition to the Quantum Q;. We obtain therefore

AW _ Q1+ 0)=(02+0) _ 01— 0
01+ 0 01+ Q' .

The quotient

01—0 Ti—1D
0 T

’

therefore appears as the upper bound of the economic coefficient.

In the second case, a quantity Q” of heat will seep from the colder to the warmer
reservoir during a cyclic process, and if we require the previous value d W and start
from the same temperature 77, we will obtain

aw_ (21 = 0"~ (02— 0" 2%
0,1—-0" 0,—-0" 01

’

so that

01—0, Thi—-1
Qi T,

appears as the lower bound of the economic coefficient.

Because of the possibility to directly transfer the heat from one heat reservoir to
another in an irreversible way, in addition to a reversible way (so with the transfor-
mation of one part of the quantity of heat Q| into work or the other way around), the
second half of the formulations of Clausius’ law lose their validity®; in the “normal”
world the first two formulations are valid, in the “reversed” world, the latter two.

26Because Q" can be equal to or even bigger than Q»; as a consequence, formulations 1 and 2
would not be valid in the “reversed” world.
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All the properties of the states of equilibrium and of the quasi-static changes of
state are the same in both worlds, as follows from axioms A, B, C, and D.

§ 8. However, on closer inspection, we recognize that the whole theory of quasi-
static changes of state would be valid even if the sequence of states of a system
during an irreversible process were actually reversible. It is useful to understand
the difference between the concepts “unattainability” and “irreversibility” and their
relation to the whole theory.

In so far as the expression “unattainability” is used to justify the claim that d O
has an integrating denominator, it refers to an equation (the Pfaffian equation:

Yld.X] + de.xz +--- Ynd-xn = 0)1

that does i contain time as a variable. This equation only defines a relation between
changes in the parameters that correspond to the respective adiabatic changes of state;
one can read off from this equation which consecutive equilibrium states can lie on
an adiabatic path. However, one cannot read off from this equation the direction
in time in which this path will have to run, be this in both directions or just one.
Two states that lie on two different sides of one state along an adiabatic path will be
“attainable,” according to this equation—even if this path is “irreversible,” according
to the temporal sequence. Whether a particular state can be attained adiabatically
quasistatically from a given one, only depends on the coefficients of this Pfaffian
equation, and nothing else. So we conclude first that for the existence of entropy it
is irrelevant whether the quasi-static processes are reversible or not.

Now consider the sequences of states traversed by a system in an irreversible
process—understood in the usual sense—and for the moment ignore that these
sequences are in fact irreversible. We call these sequences “non-static”” changes of
state.

The state of a system at every instant of a non-static process is not defined by the
same number n of parameters xy, x», ... X, as is the case for quasi-static processes: as
soon as a non-static process begins, the homogeneity regarding some of these param-
eters is destroyed, one immediately has a temperature, pressure, or concentration
drop.

[Often (for turbulent processes) one cannot ascribe a precise value for these param-
eters even for the smallest part of the system. For slow processes (especially when
the system is made out of solid bodies or fluids) one can, however, ascribe (in good
approximation) a precise value to these parameters to each point of the system. These
values, however, vary for each point. These are therefore states that are defined by
infinitely many parameter values.]

If we think of a system in a state of equilibrium to be represented by a point in
an n-dimensional parameter space, then we have to say that as soon as a non-static
process begins this point will have to leave the parameter space. [If we approximate
the different parts of the systems with a continuum, we can speak, for the case of
slow, non-static processes, of an “infinitely dimensional” space, from which the n-
dimensional space forms a subspace and the point that represents the system leaves
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this n-dimensional space. This point will describe a path that will have its starting
point and end point in this n-dimensional space.]

The non-static changes of state are therefore not represented in the n-dimensional
space, for which the Pfaffian equation is valid.?’ As a consequence, they have no
relevance for the question concerning whether a path that obeys this equation from
a particular point in this space to another point is attainable or not.

We therefore secondly conclude that the potential reversibility of non-static
processes would have no influence on this unattainability.

We, therefore, see that the quasi-static, adiabatic unattainability of particular states
that are near a given state does not have anything to do with the question concerning
the irreversibility of any process; in particular, this unattainability is not a conse-
quence of the irreversibility of non-static processes. It is for this reason that the
formulation of Carathéodory’s “Axiom II” is replaced with “Axiom A” above.

The second law for guasi-static changes of state’® would therefore also not be
violated if one could find a way to make non-static processes reversible. However,
the law would lose its meaning for processes that depart greatly from quasi-static
processes: all four formulations would be violated, and the economic coefficient
would not have any bound. This means: the irreversibility of non-static processes
has no relevance for the existence of entropy, but it is fundamental for the validity of
Clausius’ principle for real processes.”

§ 9. The following remark is allowed here: Thermodynamics would gain much
more conceptual clarity if one fixed by explicit axioms: 1. the conditions for the real-
ization of non-static processes, 2. their irreversibility, and 3. the determination of their
direction, and emphasized them as a third group of axioms (axioms of irreversibility)
in addition to the second group: Axioms A, B, C, and D (to which one could also

270ne could think, for the case of slow processes, of expressing their energy balance in terms of an
equation with infinitely many terms, which, however, would not be holonomic.

28 And for those changes of state that depart only slightly from quasistaticity.

29Let us compare the thermally non-homogeneous systems that go through quasi-static changes of
state discussed in §5 with thermally non-homogeneous systems that go through non-static changes
of state. Let us not be disturbed by the fact that, for the latter processes, the expression for d Q would
contain infinitely many terms. What these two groups of processes have in common is that for both
groups, the expression d Q is not holonomic, i.e., it does not have an integrating denominator. As a
consequence, both systems could perform a cyclic process, in which for one part of the path heat
is extracted from a single reservoir of constant temperature, and in which for the remaining path
the total quantity of heat d Q obtained by the total system is zero. The fundamental difference,
however, is that, on this kind of “adiabatic” path, a system from the first group could not be isolated
adiabatically from its environment (otherwise—because of adiabatic isolation with each other—
each of its components would not obtain any heat, and this would reduce excessively the variability
of the parameters)—therefore, there should be other heat reservoirs in addition to the first one.
Among these other reservoirs there also have to be ones (as one can show), that, on the whole,
take up heat from the system. On the other hand, a system from the second group can remain
adiabatically isolated from its environment during the whole part of the adiabatic section of the path
of the cycle, as each of its parts can obtain the required heat from its neighboring parts. This is the
reason that, with regard to non-static processes, something from Clausius’ Principle will remain
only if the non-static processes are prohibited in at least one direction.
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add Nernst’s axiom) and the first group of axioms, that serve for the definition of
internal energy, quantity of heat, and temperature (Axioms of the First Law).

The “Second Law for all real processes” would result from a combination of the
two latter groups.

The relationship of this third group of axioms to the second group can also be
expressed by the following scheme:

a) All formulations of Clausius’s law are valid for quasi-static processes, indepen-
dently from the irreversibility of non-static processes.

b) All four formulations lose their validity for the totality of quasi-static and non-
static processes if the latter are also reversible.

¢) Two of the four formulations are saved for the totality of quasi-static and non-
static processes if the latter are irreversible. Whether it is the first two or the
last two that are saved depends on the directionality of the allowed non-static
processes.

d) If the quasi-static processes are also irreversible, then this would not at all affect
the existence of entropy, as it would not modify the coefficients Y; of the Pfaffian
equation considered above. Because of the same reason, it would also not yield
a new integral of this equation. However, it would not make sense anymore to
talk about cycles and everything that has to do with them.>°

§ 10. The comparison of remarks a, b, and ¢ can also contribute to reconcile the
cleft between classical thermodynamics and the kinetic theory of thermodynamic
phenomena; this comparison shows how much would remain from thermodynamics
if one would want to expand it to the periods in which processes run in the opposite
course.?!

Leiden, July 18 1925.

30Remark d has to be mentioned—despite its complete abstraction from physical aspects—as this
remark illuminates the mathematical relations contained in the second law from a new perspective
and it shows once more the very different role that the axioms of the second and third group play
in thermodynamics.

310ne believed, at the beginning, that the incessant increase of entropy (with which one identified
the whole second law) had really been proven through the Boltzmannian H-Theorem on the basis
of kinetic interpretations, while in classical thermodynamics the second law appears only as a
postulate. On closer inspection, however, one sees that both theories need to be founded on axioms
that, each in their own language, actually say the same thing: equalization of temperature, pressure,
etc., in classical thermodynamics; the Stofizahlansatz in kinetic theory. Both theories, therefore
start more or less from the same axiom. However, in the kinetic theory—now that it has been put
under the magnifying glass—it does not appear to be so unconditionally valid as it is for classical
thermodynamics; indeed, what is more: the periods in which it [the axiom] is not satisfied and
in which all phenomena show an opposite direction, are equally probable as those that show the
“normal” course of direction. A discrepancy between classical thermodynamics and the kinetic
theory appears in the moment when one wants the absolute equalization of temperature, pressure,
etc.—and, therewith, the first two formulations of the Second Law—to be valid for an infinite
amount of time.
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Translation from Dutch: Papers e
on the Pedagogy of Mathematics

Pauline van Wierst

8.1 Which Use Can Geometry Education Have for Students
that Do not Continue with Mathematics?

The goal of this writing is to consider only that of geometry, which has common
cultural worth, and therefore, justifies that it be taught also to people that do not
have an aptitude for mathematics, and in their further life will not come in contact
with mathematics, nor with its applications. I am of the opinion that such an inves-
tigation is highly pertinent in our days: not only weak students and their parents,
but also mathematics teachers doubt the general usefulness of mathematics educa-
tion. It seems as if the current curriculum and requirements for the final exams lack
exactly that which could make mathematics—and geometry in particular—a subject
for general growth. Or has it really just been an illusion, which motivated making
geometry at schools with highly diverging objectives mandatory?

Geometry is concerned with Space. Nobody will deny that practical familiarity
with spatial relations can be useful to anybody: for most things that we do is the
capacity to perceive these fast and as thorough as possible of great value. The
following, however, is often forgotten: the capacity to see and visualize space
adequately plays often a very important role in enjoying the most diverse things
in our world—either created by the hand of man, or not. One could really say that
he, who is comfortable in dealing with spatial relations, distinguishes himself from
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somebody who is not, as a seeing person from a blind, and that spatial imagination
should be developed from childhood on just as much as the musical ear and physical
skills, etcetera.

It is, however, a different question, whether or not spatial relations should be
brought to everybody’s awareness, and if so, whether it should be presented as
an ordered composition or as loose propositions. In short, whether exactly geom-
etry education offers the most appropriate method to provide everybody with the
knowledge of space.

Concerning the use of spatial insight in action, probably the same holds as what
was already noted in other contexts: knowing—thinking—delays acting, dissolves
it. A painter, a cox, a hunter, a cyclist, will use their spatial visualization the best,
when at the crucial moment in their naturalness they are not hindered by knowing.
Pythagoras’ theorem or the calculation of the surface of a sphere would be of little
use in such circumstances.

There are other activities for which knowledge of certain—especially also quanti-
tative—spatial relations are very important. But on closer consideration, it turns out
that also in this case the whole Euclidean framework is disposable.

Thus if it were just about the development of spatial visualization and practicing
its application, then maybe in many cases other teachers could be more of help than
the teachers of geometry. Geometry has, however, also another aspect which gives
her particular cultural significance: the treatment of spatial relations has reached a
particularly high level of logical rigor. Many expect therefore that acquaintance with
geometry will have a special effect also on the students’ capacity of thought.

That practice does not always live up to this expectation is known only too well.
What, however, is the cause of this? Who wants to stick to his conviction (either pro
or contra) can always do so: after all, one has every student only in one copy, and one
can never know how he would have done on logic without education in geometry.
Therefore, of course, everything that is said about this will be merely a guess. But
fortunately, these guesses are based on experience which everybody can check for
themselves, and therefore, these considerations don’t need to be taken on trust, but
should serve as an inducement for one’s own opinion.

I am one of those that do believe in the effect of geometry for the education toward
“being logical.” I do think, however, that the instruction will have more success in
this respect when one is clear on what “being logical” actually is!

Until the beginning of this century, one considered almost exclusively one side
of the faculty of thinking: the formal-logical side. The failure that resulted from
this emphasis for geometry education brought about a movement of teachers! that is
characterized by the slogan “intuition.” The representatives of this movement often
even had an antagonistic attitude toward education in a logical direction.

In reality, however, what happened here was that the other side of the faculty of
thinking, which is just as necessary to reach logic, and was instinctively brought to
the foreground.

I would like to show that geometry education will only then be maximally
fruitful—both with regard to the development of spatial imagination as well as of
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logic—when one attributes to intuition its rightful place in the process of thinking.
Later more about this.

Here, I would like to say why I expect exactly from geometry this logical function.

It is no coincidence that spatial relations have been especially deeply logically
analyzed. The same reason, which made it possible through the collaboration of many
for centuries, makes it also possible for everybody individually to have this priceless
experience: to organize a piece of his experience in a logical manner by means of
his own thinking. The reason is the unpaired simplicity of spatial relations. No other
subject,” with which human thinking occupies itself, is remotely as simple—unless
one includes the rest of mathematics. With respect to the latter, however, geometry has
the benefit that its material is familiar to every human being from its daily experience,
and moreover is perceivably given.

If at least the faculty of thinking can indeed be cultivated, then that would be by
its own activity, by judging, by formulating one’s perceptions, and ordering them
logically. One would be more motivated to do so when the material is presented
intuitively, and is not dauntingly complicated.

In everyday life, one thinks little and only fragmented: one is usually content with
separate judgments and does not attempt to unite these judgments into a consistent
system. There are people who like this incoherence, a kind of vagueness in their
views. Admitting such diverging views, still one should not overlook the following:
the desire to express the experienced at least every now, and then and to be understood
by others exists even within the most unreasonable people. One can see this in even
the smallest disagreements: often embitterment arises caused by one’s inability to
express clearly what he intuitively sees, and the other’s inability to take notice of
only that, which is essential to the speaker. Practice in thinking and in expressing the
insights that one acquired will surely do a favor to anybody at times.

8.2 What Is Being Logical?

Frequently, logic is contrasted to intuition: the words “logical,” “scientific,” and
“abstract,” are as it were used as synonyms in contradistinction with “intuitive” and
“concrete.” One holds that intuition is killed, annihilated by logic. In short, one
believes that being logical means: turning away from intuition.

Against such a view protested already the most preeminent practitioners of the
most abstract sciences, for example, H. Poincaré, and F. Klein, who also drew the far-
reaching consequences for mathematical education. Also L. E. J. Brouwer highlights
the role that intuition plays for the insight into the mathematical concepts.

Given, however, that views on logic and intuition diverge so much, the reason for
this is probably partly also linguistic.

So far, analysis of the faculty of thinking did not advance so much that there
exists a fixed terminology concerning it. The meanings that different people attribute
to the word “intuition” do have something in common, but are not identical. I hope,
therefore, that the reader will forgive me in case my usage of words differs from his.
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My use of words is based on the following view: by acquiring insight there are always
two steps which should be distinguished: seeing a certain feature in the picture that
we have in mind and becoming aware of it. The element of “becoming aware” has a
preeminent role in all the different steps in the process of thinking: by grasping and
ordering that what initially is represented in our intuitive picture, by identifying the
gaps and contradictions in it, by aiming to fill those gaps, and by tracing the origin
of the inconsistencies. This all, I call the “logical” work. That, which in this manner
is processed (or sometimes also remains unprocessed), I call “intuition.” Disclosing
something without being aware of it and also its unconscious ordering I count as the
“Intuitive” work.

That such a division between the conscious and the unconscious in the procedure
of acquiring “insight” is, in any case, justified, and can be shown with the example
of unconscious action, in which case there is undoubtedly some form of perceiving,
and in which case there cannot be any thinking—of logic—(for example, a quick
movement to avoid a threatening danger, before one understands what had to be done
and why). However, what seems to me to be very essential and what, as far as I know,
normally is not pointed out, is that logical action without intuition is impossible.

One likes to tell that Gauss said about one of his discoveries: “I already found
the theorem, I just did not prove it yet”—which is used as a proof that also in math-
ematics, in an intuitive manner—without “logical thinking”—one can gain insight.
Also H. Poincaré talks about how searching and finding mathematical facts often
happens in an unconscious manner, and he concludes from this, how very neces-
sary intuition is for a mathematician. These are, however, all cases in which the
disclosure and the awareness are very clearly separated from each other in time.’
I want to stress, however, that also in cases where understanding happens in one
single—timely unseparated—moment, the two movements are present: always also
the intuitive. Without intuition no thinking is possible.

It is often said: “he made a mistake because he relied on his intuition; he should
have used his logic.”—in our way of speaking, one should say: “he made a mistake,
because he used his intuition in a sloppy way: he should have ordered the first
impressions that his intuition gave him better, that is, treated them logically: then he
would have discovered that not all these impressions have a place in the complete
intuitive picture, that something or other was in contradiction with the whole and
should have been replaced by a better (intuitive!) element.”

But: is this all relevant for scientific thinking? Isn’t scientific thinking a very
special process in which intuition is replaced by logic? After all, we did not speak
about formal logic yet!

An old saying goes that one can explain clearly, what one understood well. That
is why a proof which is formulated in syllogisms is a sign that one analyzed the
material adequately deeply.

It is, however, not correct that the syllogisms are the instrument itself of thinking.
Does looking for an answer consist in the concatenation of syllogisms? Can some-
body else, that we show our syllogistic argument, follow us, without thinking himself
... in a non-syllogistic manner?*
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The logical form—not only the syllogisms, but any somewhat purely one-
dimensional concatenation of thoughts—comes forward at most as the closure of
the thinking-process or as starting point for new research, because, as mentioned
before, one can see from this that the question has been analyzed adequately deeply.
But even though this kind of formal processing is used frequently in the process of
thinking, it is not the case that they are the thinking!

Understanding the object does not happen in those moments in which one abstracts
from it and considers the formal-logical relations between the propositions that
describe it: in such moments, of course, one thinks, but not about the object but
about something else—about these formal relations. One relates oneself to the object
not as “thinking,” but as “calculating.” For example, the algebraic treatment of the
formulas in physics is not thinking about the physical relations themselves, which
are represented in these formulas.

That I reserve the term “thinking” for this one thing only: for the treatment of the
intuitive material through consciousness, might be a matter of terminology. But the
essence of the matter is, that in scientific research I distinguish between two things:
the “thinking” and the “calculating”—in the above sense—and that therefore I do
not refer to both with the same term “thinking.”

There are things that we discovered by means of calculating only (“calculating”
now in the usual sense). But anyone will acknowledge, that he possesses knowledge
obtained in this manner in a completely different way from knowledge obtained by
“thinking” in the sense that I attributed to it. Knowledge obtained by calculation can
easily be wrong and one can (unless one also tried to give her a place in the original
intuitive picture by means of “thinking”) be fooled: many a good scientist can tell
such a story from his own experience.

But the same also holds for the application of formal logic. Moreover, one uses
her rarely to come to know something new. Also when one is formulating proofs, the
real difficulty is to come to know and bring to light the premises, which are essential
to the case: the formal-logical reasoning itself costs usually no effort— and as such
gives no new insight—it is an automatic consequence, as it were.

About a problem can be difficult: becoming aware of what one is searching for,
how one should shape the question so that the subject is presented in the most effective
way—because also this initially is seen intuitively and sometimes only much later
and with a lot of effort brought to consciousness; subsequently, the ordering of the
material which is given by intuition, collecting everything which is relevant, and
discarding everything irrelevant. Who can do this is logical.’

The actual work of logic happens at those moments in which intuition is brought
to consciousness.

To illustrate what I mean with “logic” and “intuition,” and for later use, I would
like to make the following remark. In geometry ever since Euclid, two completely
different branches of science have been conflated: the Study of space and the
Axiomatics of geometry. The intuitive material of the study of space is that, which is
given by spatial imagination (it is here not important, from where the latter comes).
The logical elaboration of it exists in finding the most essential spatial relations,
formulating and identifying them; also in identifying relations, which go beyond
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immediate imagination, but which we nevertheless do not doubt, because we see a
connection with the spatial relations familiar to us.® It makes that our knowledge of
space becomes richer and clearer.

The intuitive material in axiomatics are all the axioms, which comprise for us the
study of space’; the logical elaboration of them consists in bringing to stage the most
essential of those, from which the others can be deduced logically, and showing their
(formal-)logical independence; she yields a more perfect system of axioms, one in
which the logical coherence has become clearer.®

The content of intuition can consist in sensory perceptions (like in study of space),
but also in the results of a former logical elaboration (like in axiomatics). This is the
contradistinction between “concrete” and “abstract.”

When I elaborate a certain intuitive picture logically, then I focus on its particular
characteristics, so that all the others are driven to the background: this is “abstracting.”
When in this picture I am especially interested in one characteristic, which I do not
understand at first, then it is very important, that I pick out only those elements of the
picture, which have something to do with that: to be able to think I must master the
art of abstraction. In this sense, one can admit that “being logical” coincides with
“being abstract.” But one has to keep in mind that in order to be able to be abstract,
the intuition from which to abstract, is unconditionally needed.

When one expresses the result of thinking in words, one gets abstract sentences,
that is to say, such that display only a few elements of the intuitive picture. But
he, who formed them, possesses more than this. And this holds in general: when
somebody states that the expressions of the other are “too abstract,” then he himself
is the one which misses the necessary intuitions, not the other which is blamed
for his abstractness. The other is of course not excused by this: when he wants
to communicate his insights, then it is his task to make sure that everybody gets
the same intuitive picture, from which he himself reads his judgments and proofs!
Nevertheless, this is the work of an artist and for a normal human being in most
cases extremely difficult. But in many cases, undoubtedly many difficulties could be
avoided, if one did not assume the false axiom that all people have possessed from
the beginning of the same intuitive picture.

The ultimate goal of thinking—which often is reached only partially’—is
obtaining an intuitive picture, that is more perfect than the initial one and that one
comprehends well. In this sense, it is thus not true that logic kills intuition, as is
often sustained; to the contrary, she enriches her.'? I hope that I managed, with my
terminology, to distinguish these two elements which can be developed in education
by very different means.
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8.3 Can Geometry Education Promote the Development
of Logic?

In connection to all the foregoing, my answer would be yes, as long as one does
not fail to create those preconditions without which thinking itself is impossible.
These preconditions are a sufficient amount of intuition and the curiosity to analyze
it. In general, little or nothing is done to this aim: some of the teachers do not
know how necessary it is to take care of this for many students, they believe, that
the comprehension of spatial relations is formed synthetically with the help of the
axioms of geometry (that these axioms could be something else than the excerpt
which came into existence by analyzing the intuition which had already previously
been given); others presuppose that every student already possesses from itself the
necessary intuition—and then build upon something, which in many cases does not
exist (sometimes one sees a remarkable phenomenon: spatial imagination is present,
but because of a misunderstanding it is not taken into account in the geometry class).

But even if one had only students that already beforehand were capable of good
spatial imagination, then still could several factors in the current common education
diminish their receptivity for “logical rigor”:

1. In the first place, it would be the mix of two sciences which was mentioned in
the previous section: the study of space and axiomatics, whereby two different
conceptions come into play, without them being clearly distinguished from one
another. At the same time has the alarming word “proof” in these two sciences
has two different meanings. In the study of space one understands “proving” as
giving insight into the correctness of the proposition. In axiomatics it means:
tracing the proposition logically back to the axioms. In this sense, no one would
object to accept a proposition as “proven,” even if no one believes that she is valid
in empirical space—if one is considering an axiom system which does not hold
for empirical space. In this last meaning, on the other hand, a proof is required,
even if there is no way to make the students doubt a certain proposition—as long
as this proposition is not an independent axiom.

If the teacher is not conscious of this distinction, and, as a faithful servant of
science, tries to convince his students that without the proof of an obvious propo-
sition, their whole geometrical knowledge is built on uncertain foundations, then
this can easily make them doubt the “seriousness of science.”

Of course, it is no coincidence that views stemming from both sciences are
intertwined in education: they do really turn into each other unnoticeably and
different individuals will draw the line at different places. This is a stronger one’s
capacity to think; the more propositions will not be obvious to him—for he will
be more capable of indicating different possibilities.

Let us consider, for example, the question: draw a circle through three points.
To find the center, as is well known, we use only two of the three connecting
lines. The center is the point where the line segment bisectors of the two lines
cross. The proof does not give difficulties. But then the question arises: will the
line segment bisector of the third connecting line go through that same point?
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Intuition will expect this immediately. Somebody, who is logically inclined, will
nevertheless have the urge to identify the reason for this, which he will do easily.
But for a mediocre student, it will be hardly possible to focus his attention on
this. Nevertheless, the question might become more meaningful to him, if one
formulates it like this: “doesn’t one obtain three different circles, when one starts
every time with a different point?” (Think about the construction of a triangle,
when three sides are given: one gets more than one triangle, even though intuition
seems to say initially that the triangle is determined completely by the three
sides!)—Often, in this manner, the goal of a proof which seemed axiomatic can
become clear.

I am far from the opinion that the axiomatic point of view should be eliminated
from education. To the contrary, I think it has great practical value, that somebody
is interested not only in the correctness of his views, but also in their origin and
logical reasons; this is also a better guarantee for the correctness of the views,
or it helps to see its relativity: much bigotry could be avoided, and many new
possibilities could be realized in this manner... But also in any normal occasion,
in which we want to test a certain proposition, we must draw conclusions from
uncertain premises and only later on the basis of the conclusions decide, whether
or not the premises are credible—and that is called adopting the axiomatic point
of view!

But how to make students familiar with the axiomatic way of thinking, that is
another question. Often it is said: the infantile mind is not receptive for “scientific
thinking” and requires explanation which is more directed at intuition.Now, how
necessary intuition is for all thinking and all ages, we already discussed. The
indifference, however, that many students show after the first geometry lessons
for the “logically rigorous” proofs, can very naturally be explained, by that it is
in itself impossible to be interested in the viewpoint of axiomatics, before one
got to know the system of propositions that have to be axiomatized, that is to
say, the study of space. Relatively few individuals are instinctively inclined to
trace back one proposition to another, without questioning the goal of it. Most of
them can only show interest in the study of space, which they take—really not
unjustly—geometry to be. And with this, they get enough opportunity to sharpen
their logic. And if one would like to give way to this natural inclination, this
would at the same time be more logical.'!

The introduction to axiomatics and also to questions of an epistemological nature
(of course, not to an exaggerated extent) would be much more in place after the
systematic course about the study of space. If the teacher would then manage,
then this would, in my opinion, contribute more to the development of the student,
than extending his knowledge with a couple of artificial moves to solve problems.
I believe by the way, that this also holds for students which will later specialize
in mathematical subjects.

The other danger lies in the common method of education, that maybe one can
justly call the “method of insisting.” It consists in trying to get the students
to imprint the results of the thinking of others, by letting them repeat proofs
which are handed to them completely, expecting that in the long run they will
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get so much used to the form of proof, that they will start to think more clearly
themselves. Hereby, however, one forgets the following: the Euclidean form of
proofs is a meaningful summary of the results of thinking, but not a reproduction
of the process of thinking itself. And therefore one cannot learn from it how to
search, but only how to formulate the findings.

To use this benefit, one should first search and find the thing oneself; only then
one can appreciate, to which extent a pure and short formulation will contribute to
completely remove the last unclarities that might have remained in our thoughts.'?
There are, of course, students that understand the issue immediately. For them, the
Euclidean form of explanation is a sufficient hint for what they should imagine,
in which way they should think themselves. They do not rail with “abstract,”
because they already possess the necessary intuition themselves.

But for others, one should first make sure that the pertinent questions do not
appear abstract, that they accept the goal of proving: then they will also start to
think as well!

3. A third danger for logic is overloading the course. Euclid showed two precious
things: (1) how one can reduce a proof to the essential, and (2) how one identifies
the most important in intuitive material and organizes it in such a way that every
element of it can be acknowledged and proved with the greatest possible ease.
He who absorbed the spirit that is contained in here, from him it can be said that
he has learned from Euclid to be more logical. This spirit is, however, forced to
the background when one includes propositions in the buildup of the proof which
are not strictly necessary for the deduction of those relations, for which the whole
buildup is taken on. That, which in elementary geometry is the final result, are
the quantitative relations for the calculation of the area and volume of the sphere.
That, what one necessarily needs to know to deduce those, suffices also in any
other area that has to do with spatial relationships, at least as long as one does
not want to go into particular depth. They are the propositions about congruence
and similarity of shape of triangles, Pythagoras’ theorem, the calculation of
the surface of parallelogram and triangle when basis and height are given; the
calculation of the volume of a parallelepiped, the theorem concerning the equality
of volume of pyramids with equal bases and heights, and finally the concept of
limit in the definition of quantities that come up in the treatment of the circle, the
cone, and the sphere. For someone who in the future will never be concerned with
geometry anymore this definitely suffices.'> But when he needs to learn many
deduced propositions and applications, which of course are less simple than the
fundamental system and therefore will preoccupy him more, then he will lose the
thread and will remember, after the end of his education, only some particular
disconnected theorems.

Many teachers are of the opinion that a theorem from the fundamental system
(let us take for example Pythagoras’ theorem), is only understood well, when
students have practiced in applying the theorem to various questions. But when
one has a closer look at the matter, one notices that for such applications the
difficulty is not the application of Pythagoras’ theorem, but rather the use of
various artificial moves, that require not the understanding of the theorem, but
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some special geometric innovative power, which one cannot cultivate in non-
geometers anyway. Whether the theorem will be understood or not, depends,
however, on what the student had learned to master beforehand. How important
the theorem is, is best displayed when one shows that she is the ground for all
important calculations that are discussed in the course, and also how often it can
be applied in practical questions (without artificial moves!).

Learning many deduced propositions, which all in one case or another can be
used as “auxiliary proposition,” has another damaging consequence: the student
tries—when it comes down to it—to bring out one such proved formula which
has been useful at some point from his memory, instead of trying in a natural
manner, by application of just a few fundamental propositions, to work through
the problem himself. This applies most of all to the projection theorem, Stewart,
etc., which anyway are nothing else than modified applications of Pythagoras.
The purpose of logic is most of all to, as it were, concentrate that what is inves-
tigated, to accomplish the connection of the whole area using a small amount of
strings. Therefore, it seems to me that an overload is simply an offense against
the requirements of logic.

Just as Euclid’s proof method is appreciated only then when one by investigating
itmade it one’s own, in this manner also can the conformation of the whole system
become clear to somebody just through his own work. For this, the opportunity
can be given by showing right at the start the goal of the investigation, and also the
most prominent steps that have to be taken to reach it. The students can then try
to establish what one needs to know to answer such an intermediate question and
what in turn is needed to know that. Those, who are unable to do this, will in any
case, look at each proposition that should be proven with more understanding.
The students will take an active-penetrative attitude with regard to the system,
when one does not immediately start with the systematic course, but instead
precedes this with a series of discussions and exercises that give the students a
much broader insight in spatial relations as a foundation. The systematic course
then presents itself as a purposeful analysis of everything that one has seen in
“real” space, as a solution for questions that one encounters in practice. These
questions will regard, however, mostly the last propositions of the course—and
in this manner will at the same time the whole course be given a direction.

The program, of which I would expect success for the development of logic, would

thus be the following:

1.

In the first place an introductory course, in which no theorems will be proved,
but preparing exercises will be made to develop spatial imagination. About this
more in the next chapter.

A systematic course, which, however, should be different from the common one
with respect to the following:

(a) A proposition will only then be proved when there is at least one student in the
class for which it is not evident; evident propositions will explicitly be accepted
as (temporary) axioms. (b) Determining, formulating, and proving propositions
will happen—not without guidance of the teacher, but still with far going input
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of the students themselves. After an “introductory” course this will be possible.
(c) The content of the course should be as concise as possible.

3. Axiomatic revision of that which has been learned, in which many of the
“temporary axioms” will be “proved.”

After that the students, by means of the problems of the systematic course—
which they always have been able to accept with their own reasoning—practiced
with proving techniques, also this will be easily doable.

Some introduction to the questions of axiomatics and epistemology would be
welcome, but should not be obligatory for every teacher and every class. The whole
education should be impregnated with the connection between the geometrical propo-
sitions and the spatial relations that one encounters in the material world. The students
should be able to recognize the concepts and relationships that they learned in
geometry in reality.

8.4 The Introductory Geometry Course

The intuitive content of the study of space will be acquired by sensory experiences:
one can have different views concerning the aprioricity of spatial representations—
nevertheless one can easily experience that those configurations which one has seen
and felt more are easier to imagine. For this reason, it is definitely an improvement,
that the geometry teachers now will direct their attention toward the “laboratory
method” of education. Nevertheless, I do have something against textbooks written
in this spirit. What I have seen in this area (it could be, that a book which is different,
escaped me!) has a common inclination: what one finds is more an escape from
logical rigor, than an enrichment of the course with spatial images.

It comes down to proving Euclid’s axioms anyway, only one does not prove them
“more geometrico” but “more physico”—or something like that.

This shows, however, that one also misunderstands the physical method: nobody
will create a physical experiment in order to prove the consequences of well-known
facts: those will be deduced in physics, just like in geometry, by thinking—for this
one has his ability to reason, to save himself from the redundant experimenting!

For the questions in Elementary Geometry at school there is no reason to bring
about experiments: the fundamental hypotheses are also like this, immediately clear
for everybody, as soon as he only understood what they are about; deviations from
this in the material world—which are made probable by the theory of gravitation—
can anyway not be detected with the accuracy of student-experiments; whereas the
consequences of that, with which one is occupied in the normal course, do not
introduce such difficulties calculation-wise, that they justify substituting experiments
for calculations.

Moreover, experimenting is not always the best way to provide for the necessary
intuition. Compare, for example, the proof of the proposition about the sum of the
angles in a triangle according to the experimental method with its proof according to
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the method of Euclid. A purely empirical proof would be the following: one measures
the angles of various material triangles—for example, in degrees—and every time
one sums up the three numbers thusly obtained.

Summing up these numbers, one does not experience that what one is summing
up are the three angles of a single triangle; this circumstance has here the pale role
of abstract knowledge. Euclid, to the contrary, lets one draw a parallel line, with the
help of which in thought he conjoins all angles together at a common angle point.
He, who earlier has seen the equality of angles in case of parallel lines, will see now
not only, that these constructed angles together form a right angle, but he will also
see that it is because both the constructed angles lie on a same straight line (the basis
of the triangle), which is parallel to the auxiliary line, and because both transversal
lines (the sides of the triangle) intersect in the third angle, in short: because they are
angles of one and the same triangle.

It is, of course, not difficult to introduce also in the empirical treatment of this
problem those elements that Euclid pointed out and that promote intuition so much
(by, for example, not expressing angles in numbers, but laying them out as geometrical
quantities—for example, to cut two angles of a paper triangle and hold them against
the third angle). But that, which I wished to stress, is that many a logical method
entertains more contact with intuition than most experimental methods.

Often one loses sight of the fact that exactly the Euclidean'* ordering of the
material is so fit for this.'?

The accomplishment of logic by Euclid is exactly this: ordering the visually given
material in such a way that the theorems that one needs come to hand almost by
themselves.

While the proof method can do nothing else than simply establishing certain rules
without connection to the others, Euclid makes that one intuitively sees them, by
putting them in a visual connection with others that one already has acquired insight
in. The logical method thus has something beneficial concerning the certainty and
the universal validity of her solutions, and also concerning her visualness.

One can still raise several objections against the experimental treatment of Euclid’s
axioms.

If one plans to treat them later in the systematic course anyway, then one should
not already beforehand take away from the students the joy of discovery (by means
of thinking).

Further: if one first declared the empirical confirmation of a relationship a “proof,”
it will not be easy to move the students to listen to the proof again. And, furthermore,:
the total content of a geometry course is not of such a nature that students would
have the same interest in it if it were repeated. After all, the propositions treated in
it are not so much interesting in themselves, but more in virtue of the relationship
with a broader and versatile experience which they account for, and for which they
are a manner to have a complete overview of it from one common viewpoint.

Giving students this experience must, according to my opinion, be the goal of the
introductory course, and the laboratory method should not make them familiar with
geometrical propositions, but with geometrical concepts.
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I want to make this clear again by means of the example of the sum of the angles
in a triangle. Even though I think it is very wrong to teach the general proposition
concerning it in an empirical manner, I do not think it is very bad to let the students
on this occasion first estimate the sum of the angles of some paper triangles, and
then measure it. One does not consider enough for how many students the words
“angle,” “summing angles,” “triangle,” “measuring,” etc. are “abstract”! The execu-
tion of empirical manipulations makes that students fix the meanings of those words
much more lively in their minds; the repetition in altered special cases makes those
concepts broader. The goal of such exercises must be that by mentioning a geomet-
rical figure, the student can imagine every special case, spatially oriented in every
way. The drawings on the blackboard should for him not be the objects themselves
of the education, but only the schematic representation of that which he has seen
and imagined, and must be symbols of the concepts which he constructed from it
himself.

There are so many questions, for which it just comes down to imagining the
configurations well, for which no background knowledge is required, and which are
even for the best students not trivial, but that would find no place in the systematic
course. One can connect them with problems of a practical nature (with “practical” I
do not mean merely “useful in the battle for existence,” the problems can also connect
to the interest in games or to the aesthetic or scientific interests of the students). With
that they learn that space is something about the physical world that merits special
study. After all this, a systematic research thereof would present itself as something
natural and desirable. Familiarity with the most important geometric concepts and
notations required beforehand would avoid an evil that often is experienced at the
beginning of a geometry course: one has to battle different difficulties: not being
used to the terminology, as well as the lack of imagination, so that the last difficulty,
which actually in the systematic course requires full attention; the logical elaboration
of the material will get insufficient attention.

The teachers that interact with students that have had an introductory course
conclude how much they profited from it.'®

Considering the nature of the exercises—the most beneficial would be, as said
before, the laboratory method, that is, working with material things consisting in
measuring, drawing, sticking, sculpturing, etc. Since, however, the goal is developing
the imagination one should aim to obtain, which the students first try to imagine, every
figure under consideration and then only afterward test and correct their imagination
to match real objects.

How long one should continue such exercises would depend on the general devel-
opment of the class—not longer than is required to prepare the students for the
systematic course. And in any case, one should aim for them starting to guess for
a certain regularity in the existence of spatial relations, so that in the end they will
desire to establish these relations exactly—or at least find it very natural to occupy
themselves with that.

9 <
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8.5 Some Examples of Questions that Would Be Suitable
for an Introductory Course

It seems wrong to me, to write down a systematically ordered collection of exercises
for the introductory course that I have in mind; it is not about things that one should
“learn” at all schools in the same manner. It is better when every teacher according
to his own taste and in accordance with other tasks and the character of the students
selects the examples and gets as much as possible out of it.

However, I heard from many teachers that the subject of geometry is so limited
that one is forced toward the Euclidean axioms, if one searches something that can
be understood by beginners. Therefore, I would like to mention some categories of
questions, just to show how large the choice is in reality.

1. The difference between the right and other lines. Examining whether a ruler is
straight, by putting it in different manners through two points on a sheet of paper
and drawing a line alongside it. Criticizing the method (if the ruler is bended,
then this cannot be discovered by a movement alongside those two fixed points;
turning about a fixed point in the surface of the paper sheet is not decisive
either: which divergence of straightness escapes control in this manner?) What
happens to the edge of the ruler when it is turned around its axes through two
fixed points?—if the edge is straight and when it is not?

The way that is taken by the various points of an object, when one fixes two of
those.

The axes. Describing the rotation-surfaces by means of different other lines.
Searching rotation-surfaces in the room and fixing the shape of the lines, that
can be rotated in order to describe them. Application by working with the lathe,
the fabrication of pottery.

2. Continuing the straight line in the infinite. Imagining clearly the straight line
that goes through two points within the room. Where does she penetrate the
wall or the ceiling and the floor of the room? How does she continue through
the rooms upstairs or next door?and further? Elucidate by means of boxes that
are connected like the rooms are. How is the line positioned with respect to the
rotation axes of the Earth? Explain using the globe.

3. The straight line as the shortest distance between two points in space. A drawn
cord between two points, when there is nothing in between and when there is
an object between them—imagine the form of the cord in both cases. A drawn
cord on a surface. The shortest distance between two places on Earth—measured
through the globe or on the surface. In which direction goes the shortest line of
connection (on the surface of the Earth) between Rotterdam and Batavia (South,
East, North, West)? Establish on the globe! Geodetic lines on different surfaces.

4. The light ray as a straight line. If I want to look at a point through two holes,
how must those holes be positioned? What should change if I put in between
the holes a glass prism?

The form of the shadow of an object. The space of the shadow, its borders—the
cone.
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5.

10.

11.

Estimating and then measuring of lengths of different objects in the room.
Estimating how thick a circular cylinder will be, that one makes from a square
piece of paper.

The difference between the plane and other surfaces. Can I fold every surface?
Which surfaces can I fold? Can I fold a cone on any of its points in any direction?
Which surfaces can I unwind on the table? Constructing ruled surfaces from
paper and drawn cords.

Position of straight lines with respect to each other. Searching parallel and
intersecting lines within the room. The position of the different edges of a
tetrahedron and other polyhedrons with respect to each other. Searching for a
definition of parallel lines.

Angles. Comparing the size of different angles of polygons that constitute the
junctures of different objects in the room: estimating and measuring by making
paper angles. Sum of the angles that come together in a vertex of a polyhedron.
The angle on the top of an unwound cone surface. The angle, which the minute
hand of a clock in a minute, a quarter on an hour, an hour, three hours describes.
The angles under which we see different distances. Apparent decrease in size
of an object when increasing its distance from us. Estimating the angles, under
which we see different objects, and checking the answers by measuring. Esti-
mating the angle under which we see the moon, in comparison with the angle
under which we see other objects, checking by putting ourselves in such a way,
that those objects cover the moon (an interesting experiment, that shows how
we err in estimating the size of the angle of the moon).

Central angles and arcs. Straight angles. Trying to give a definition of those.
Creating them by folding paper.

Around which angle did we turn on the entire route through all those streets
from our house to school?

Angles between two flat surfaces. Three- and more-way corners. Viewing,
imagining, and drawing after memory different polyhedrons.

Rotation speed. Comparing the rotation speed of the three hands of a watch.
Rotation speed of trains wheels of different sizes, of the Earth. The relative
speed with which we see from the train objects move which find themselves on
different distances from us. The moon walks with us. Explain this.

Symmetry. Central symmetry on the plane and in space. Symmetry axes of
second, third, etc. order. Symmetry line, symmetry surface. Looking in the
environment for examples and creating them themselves. Models of crystals.
By the creation of the simplest models from card board arise spontaneously the
more quantitative questions, which make the transition to the systematic course
very natural.

Cross sections. If 1 insert a plane through a point of a dihedral angle, then the
cross section will be an angle. For which position of that surface do I get the
biggest, and for which the smallest angle? If I let this surface go through a
straight line that cuts the dihedral angle, then still it can take infinitely many
positions. How does the angle of the cross section change, when I let the surface
turn around that line?
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13.
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Cross sections of polyhedrons—imagining, drawing free-handed, testing with
plastilin models. Change of the cross section by parallel movement of the cut,
by turning it around a certain line.

Shadows on a wall. The sun as light source: can the shadow of a thin tense wire
be four meters wide? Which shape can the shadow of a sphere take? A “pointy”
light from a lantern as a light source: which shapes can the shadow of a coin
take? Put a cover on the lantern with a circular opening and study the shape of
the bright spot on the wall at different orientations of the lantern.

Cutting figures from cardboard, from which one can make certain models by
folding them—without having to cut them in pieces. The pattern of a cone, of
a skirt, of a light shade, of a cube, of the model of a house.

Degrees of freedom. How much data is needed to determine the position of a
point in space, on a surface, on a line? Which data can that be? I know that
somebody is on a distance of 1000 meters from his front door, where should I
search for him? How many and which data are needed to determine his exact
location? How many different triangles can I draw from a given basis and
adjacent angle? And when only the basis is given? With which points on the
surface can the top coincide—in the first, and in the second case? How many
degrees of freedom does a certain mechanism have (for example, a bike, a
sewing machine, etc.)? How many angles can I draw with three things given?
When three angles are given? The latter is also a question which can be used to
introduce the systematic course.

The topology of lines in space. Something which for many people seems to be
much harder than the topology of surfaces. Using the stereoscope can in this
case be very helpful.

Drawing a knot clearly—first from fantasy, then checking. The topology of the
thread in a short piece of knitting. Different kinds of knots. The M&bius band.
Puzzles. The cross section of two cylinders, of two arbitrary second degree
surfaces.

The degree of difficulty that these exercises raise for the imagination is, of
course, varying. How far one should go in considering every single configuration
will depend on the capability and the talent of the students, but also on the
courage of the teacher and his ability to find suitable objects with which the
matter can be demonstrated.

To him, which is skeptical about such merely qualitative treatment of geomet-
rical configurations, I can say the following: in every systematic and exact
treatment of the subjects mentioned here, one should already possess the imag-
ination and the qualitative estimate beforehand, in order not to be desperately
helpless in confrontation with it: this cannot be built synthetically, on the basis
of the correctly proven propositions of the systematic course; to the contrary:
these propositions speak only to those, who have already before the study of
geometry taken in enough spatial images. That, which “good” students without
help of the teacher bring along and with which they surprise others, that can to
a considerable extent also be taught to many other students.
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Especially in Germany, America, and Russia.

Just compare an arbitrary polyhedron and everything that one discovers about
it with a horse, a flower, a dish, a sonata, a relationship between two people,
an historical event...

I mean: disclosing those relations upon which the theorem meant by Gauss
was founded and that necessarily must have been present in his intuition, if he
were so sure of his theorem—the theorem was after all itself logically clear in
the mind; or also disclosing that intuitively given area, where the fantasy of H.
Poincaré was roaming, before he managed to capture that which he searched
also with his consciousness.

Have you ever mastered a mathematical proposition really by merely checking
arigorous proof in a book step by step, without having intuitively apprehended
the relevant subject matter as a whole?

Somebody, who has from the start a clear intuition concerning a certain subject
can give purely logical, that is, harmonizing, non-contradictory utterances,
without being really “logical’—in the sense given above. The lack of logic
will show in his case as soon as he finds himself on terrain where he can
acquire the insight only by means of searching it consciously.

One sees for example easily, that between two sides and an angle of a triangle,
and its third side, there must exist a relation. That in case of a straight angle
exactly this relation is expressed by the Pythagorean theorem probably nobody
will see immediately: but they will see the perceptible connection at every step
of the proof.

Also the relations of subsumption between the given propositions and the
formal-logical structure of every proposition are seen before one can formulate
them consciously: also the logical relations are first understood intuitively!
The construction of this task of science would in principle not change, if it
were propositions about arbitrary things and not exactly about spatial relations.
Now this is actually not completely correct: in closing the gaps in this intuitive
material, one uses again and again spatial imagination. Besides, axiomatics
had to serve the epistemology of space all the time, and in the beginning was
not even distinguished from it.

I mean with this that many results remain to us only temporarily proven, and
not intuitively understood.

That which really can be killed or numbed by too much consciousness are
the intuitive responses. These are in many cases highly desired and should
be spared by the educators! By the way, most of the time consciousness
causes confusion only at its first occurrence together with an instinctive action.
After one got accustomed to it, the instincts will go ahead again. But maybe
sometimes it takes way too long before one gets this far!

One should thus renounce proving in the beginning propositions which are
evident for all students in the class. But one should not assume them implicitly.
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Sometimes one tries to remedy the lack of the own activity of students by
letting them prove, in the form of problems, some propositions which are not
needed for the conformation of the foundational system. These propositions
are, however, often more complicated than those of the system itself and can
oftentimes only discourage the students: proving them requires often not so
much thinking (that is, analyzing the intuition) but rather inventing (of special
auxiliary structures), which thus requires a special talent, which has nothing
to do with our problem: the logical development of the student.

And for the further development of specialized mathematicians, it seems to
me that the eternal combination of ever again the same concepts from Elemen-
tary Geometry—which all extensions and applications that the normal course
contains come down to anyway—are of no use whatsoever. A mathematically
inclined student would benefit much more from using his study-time to open
up a broader horizon of mathematical research.

When I talk about “Euclidean” ordering, then I mean with that every ordering,
which preserves the spirit of Euclid and which possibly articulates him even
better than Euclid himself did.

For the study of space is contact with intuition which originated from sensory
perceptions the best; for axiomatics, on the contrary, it is not suitable at all. But
therefore one cannot sustain, as some do, that using imagination in geometry
per se is “unscientific.”

I did, however, hear people say as well that the “introductory” knowledge of
the propositions in turn obstructs the willingness to accept “logical rigor”—
and this is indeed in agreement with what I said above about the “laboratory
proofs.”

Which “angles” where intended here?
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